\left( \begin{array} { l l | l } { 1 } & { 3 } & { 4 } \\ { 2 } & { 1 } & { 1 } \end{array} \right)
\frac { 10 } { 30 } - \frac { 4 } { 100 } = \frac { 1 } { n }
( x + 1 ) ^ { 2 } - 2 x ( x - 2 ) \geq 6
3 z ^ { 2 } - 2 z
\left| - \frac{ 1 }{ 2 } { x }^{ 2 } + \frac{ 3 }{ 2 } x+2 \right| =2 \left| 4-x \right|
5 c + 55 = 630
\frac{ 23 }{ 28 } = \frac{ x }{ 100 }
2 + 2 \div 2 =
( x ) ( x )
8 \cos 120 + \frac { \sqrt { 5 } } { 8 } \sin 30
\left. \begin{array} { l } { \frac { 2 } { \sqrt { x } } + \frac { 3 } { y } = 2 } \\ { \frac { 9 } { \sqrt { x } } - \frac { 5 } { \sqrt { y } } = 13 } \end{array} \right.
\left. \begin{array} { l } { 100 \sqrt { 3 } + } \\ { 20 \sqrt { 3 } } \\ { = x } \end{array} \right.
( - 7 + y ) ^ { 2 }
3 { x }^{ 2 } +1.1x-0.14=0
\left. \begin{array} { r } { t ^ { 4 } - t ^ { 3 } - 32 t ^ { 2 } + 10 t } \\ { + 100 = 0 } \end{array} \right.
4+0.04+40
y = x + 5 ; \quad y = 3 - x
\left\{ \begin{array} { l } { 2 x - 3 y = 18 } \\ { 3 x + 4 y = - 7 } \end{array} \right.
\lim_{ x \rightarrow 0 } \left(x \ln ( \sin ( { x }^{ 2 } ) ) \right)
5 \times { 3 }^{ 1-x } =45
- \frac{ 1 }{ 2 } { x }^{ 2 } -x+ \frac{ 3 }{ 2 }
( 3 v - 2 ) ^ { 2 }
\sqrt{ { x }^{ 2 } - { y }^{ 2 } }
\int _ { 0 } ^ { 2 } s i n x _ { 0 }
\lim _ { x \rightarrow 1 } \frac { \sqrt { 1 + 2 x } - \sqrt { 3 } x } { \sqrt { x + 1 } - 2 \sqrt { 2 } }
\left. \begin{array} { l } { 3 x ^ { 2 } + 1 } \\ { 5 x - 1 } \end{array} \right.
10 ^ { 10 }
x = \frac { 2 x } { 3 }
s = 32 - 2 \gamma
= ( x ^ { 2 } + x - 1 ) ( 2 x ^ { 3 } - 5 x + 8 ) +
250 \times 0.86
47 \div 8 =
\sqrt{ 548.523 }
12 x z - 16 z
f ( 3 x + 2 ) = 5 x - 1 \quad \sin f ^ { - 1 } ( 2 )
\left\{ \begin{array} { c } { x = m + 3 } \\ { 3 x = 2 m - 1 } \end{array} \right.
m + 3 = 2 m - 1
\left\{ \begin{array} { l } { 3 x + 2 y = 16 k } \\ { 5 x - 4 y = - 10 k } \end{array} \right.
50 + 5 + 40 + 400 + 30 + 35 + 70
\frac{d}{d x } \left( { 2 }^{ x } + { 2 }^{ -x } \right)
\frac { - 6 } { - 5 }
3 x ^ { 2 } + 5 x
3 { x }^{ 2 } +5x-1
2222
\cos 2 \theta
( 5 x ^ { 2 } + 6 x + 5 ) = 0
-3+6-7+9-10-5
98-6
9 \cdot 533
\int \cos x d ( \cos x )
x ^ { 2 } - 6 x + 5 \leq 0
\int _ { - 3 } ^ { - 1 } ( \frac { 1 } { x ^ { 2 } } - \frac { 1 } { x ^ { 3 } } ) d x
16 \times 9
72 \times .6=
| x | < 1
40+70=
\sin 14 ^ { \circ } = \frac { 3.9 } { a }
\left. \begin{array} { l } { x + y - 1 } \\ { = 5 } \end{array} \right.
3.8 \times 12
45.6 \div 3
a y + v a
4 ( \sqrt { 2 } + 3 ) ^ { 2 }
72 \times 26=
x = \frac { 2 x - 10 } { 20 }
x _ { x ^ { 2 } }
0,571 \cdot 0,25
0571
\frac { 4 x + 3 } { 5 } - \frac { 6 x - 2 } { 7 } = \frac { 5 x + 4 } { 3 } + 3
\left. \begin{array} { l } { c y } \\ { k A } \end{array} \right.
5 m + \sqrt { 2 z } = 6
121 f ^ { 2 } + 264 f g + 144 g ^ { 2 }
6 ( 2 y - 5 ) = 30
\frac { \sqrt { 127 b ^ { 3 } } } { ( 2 b ^ { 2 } ) x } = 192
55 + 37 = 92
\sqrt { 2 x + 4 } - 2 \sqrt { x - 4 } = 0
\begin{bmatrix} \begin{array} { r r r } { 2 } & { 1 } & { - 7 } \\ { 3 } & { 8 } & { 3 } \\ { 4 } & { 0 } & { 2 } \end{array} \end{bmatrix} \begin{bmatrix} \begin{array} { l } { x } \\ { y } \\ { z } \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array} { l } { 1 } \\ { 2 } \\ { 3 } \end{array} \end{bmatrix}
- 2 x + 3 y - 12 = 2 k
\left. \begin{array} { l } { 2 x + y = 4 } \\ { 2 x - y = 2 } \end{array} \right.
\left\{ \begin{array} { l } { \frac { x } { 1 + 2 } + \frac { y } { 2 } = 8 } \\ { \frac { x } { 2 + 3 } + \frac { y } { 6 } = 4 } \end{array} \right.
= \frac { 5 } { 18 } \times ( 1 - 2 \times \sin ^ { 215 } )
480 = ( 60 + 40 ) t
\frac { 1 } { - 0,5 ^ { 2 } } =
2 \frac { 1 } { 3 } \times ( 3.25 - 4 ) - 18.21 + ( - 3 )
( 5 \frac { 1 } { 3 } - x ) : 2 = 7 \cdot ( - 2 ) - 8
\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n \cdot 1 } \frac { 1 } { 2 ^ { n } }
\left. \begin{array} { l } { x - 3 y = 3 } \\ { 2 x + 3 y = 6 } \end{array} \right.
\frac { 2 } { 3 - \sqrt { 5 } }
( 2 ^ { 3 x - 1 } + 10 ) \div 7 = 6
41 ( 2 ^ { 3 x - 1 } + 10 ) \div 7 = 6
\frac{d}{d x } \left( { x }^{ 2 } +1 \right)
- 0,5 ^ { 2 } =
\lim _ { n \rightarrow \infty } \frac { ( - 1 ) ^ { n + 1 } } { n + 2 }
2 x ^ { 2 } = \frac { \sqrt { 13 } - 1 } { 4 }
x ( x ^ { 7 } ) =
\sqrt{ 3.6 \times 0.4 }
350 = 17 + ( n - 1 ) 9
\sqrt{ 1-x } + \sqrt{ 1+x } = \sqrt{ 2 }
y ^ { 11 }
( 7.88 + 2 \times 8.3
\frac{ { \left(2-x \right) }^{ 2 } }{ 4 }
\left. \begin{array} { l } { 48 } \\ { \times 3 } \end{array} \right.
( 1 + \sin \theta ) ( 1 - \sin \theta ) = \cos ^ { 2 } \theta
\frac { 1 } { x } \lim _ { x \rightarrow 0 } \frac { 1 - \cos x } { x ^ { 2 } }
\int{ x+12y }d x
\frac { 5 \sqrt { 2 } } { 3 \sqrt { 2 } }
\frac { \ln | x | } { e ^ { x } }
\sin 26 ^ { \circ } = \frac { a } { 16 }
\left. \begin{array} { l } { \frac { 1 } { 2 } x ^ { 2 } + 3 } \\ { = 9 } \end{array} \right.
1 - \frac { 1 } { 2 ^ { k } } + \frac { 1 } { 2 } \times \frac { 1 } { 2 ^ { k } }
\lambda 2 + 3 ^ { \circ }
\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { 1 } { 2 ^ { n } }
y = \frac { 3 } { 4 } x ^ { 2 } - 6 x + 6
500 \times .09 \times ( \frac{ 3 }{ 12 } )
5 = \frac{ 1 }{ 2 } 250 { x }^{ 2 } + \frac{ 1 }{ 2 } 50 { \left(x+0.2 \right) }^{ 2 }
\frac { x - 10 } { 20 } + \frac { 4 x + 5 } { 13 } = 1
2 \sin ( 3x ) = \sqrt{ 3 }
4 \sqrt { 6 x ^ { 3 } } \div 2 \sqrt { \frac { x } { 3 } }
= \frac { 2 x - 10 } { 20 } + \frac { 4 x + 5 } { 12 } = 6
x ^ { 31 }
e ^ { 5 n } = \frac { 1 } { 2 }
R = v \{ 0 \}
\left. \begin{array} { r } { 9 \times 26 } \\ { - 36 } \end{array} \right.
\frac { 161.5 } { 2 } = \frac { 113.5 } { x }
\left. \begin{array} { l } { 1,25 } \\ { 8 } \end{array} \right.
4 { x }^{ 2 } -1
\frac { \sqrt { 3 } } { 2 } =
6 h ^ { 2 } + 29 h k - 5 k ^ { 2 }
\left. \begin{array} { l } { 9 + 8 } \\ { 07 ^ { 5 + 7 } } \end{array} \right.
{ x }^{ 3 } +18-3=0
(7.88+(2)8.32) \div 3
x( \frac{ 1 }{ \sin ( x ) } - \sin ( x ) )
2 x + 6 = 11
2 ( 4 - 3 w )
( x + y ) ( z + y ) + 3 x - 5 y = 12.753
0.571 \times 0.25=
{ x }^{ 4 } - { x }^{ 3 } -5 { x }^{ 2 } -x+1=0
| x ^ { 2 } - 5 | < 4
3 x ^ { 2 } - 6 y = 13
2 x \cdot 5 = 100
\frac { x \csc ^ { 2 } 30 ^ { \circ } \sec ^ { 2 } 45 ^ { \circ } } { 8 \cos ^ { 2 } 45 ^ { \circ } \sin ^ { 2 } 60 ^ { \circ } } = \tan ^ { 2 } 60 ^ { \circ } - \tan ^ { 2 } 30
a = ( 9 + 0 )
\sqrt { 1.5 } \div \sqrt { 12 } \times \sqrt { \frac { 3 } { 2 } }
{ x }^{ 2 } \times 5
a ^ { 2 } - 10 a + 25
0.8 \times 800
\left. \begin{array} { l } { C P = 7000 } \\ { S P = 7250 } \\ { \text { find the profet } } \end{array} \right.
\sqrt { [ ( \pm 4 ) - ( 0 ) ] ^ { 2 } + ( 6 - 1 ) ^ { 2 } }
\int ( e ^ { x } + e ^ { - x } ) d x
994010
3 x - \frac { 8 } { x } = 2
\int \tan ^ { - \frac { 3 } { 2 } } x \sec ^ { 4 } x d x
\begin{bmatrix} \begin{array} { c c } { 0.3 } & { - 0.4 } \\ { - 0.1 } & { 0.6 } \end{array} \end{bmatrix} \begin{bmatrix} \begin{array} { l } { x } \\ { y } \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array} { l } { 10 } \\ { 10 } \end{array} \end{bmatrix}
\sqrt { 36 \times 256 }
\lim _ { x \rightarrow 1 } \frac { \sqrt[ 3 ] { x ^ { 2 } } - 2 \sqrt[ 3 ] { x } + 1 } { ( x - 1 ) ^ { 2 } } \cdot ( - \frac { 1 } { 9 } )
\left. \begin{array} { l } { ( 12 - 63 ) } \\ { \times 16 } \end{array} \right.
2 x \times 8 = 20
Q _ { p } = \sqrt { ( 5 - 0 ) ^ { 2 } + [ ( - 3 ) - 1 ] ^ { 2 } }
2 \pi { x }^{ 2 } +6x+ \log ( x )
\frac { 3 } { 4 a ^ { 4 } } \cdot ( 2 a ^ { 2 } b ) ^ { 2 } =
1000 \times .06 \times ( \frac{ 9 }{ 12 } )
37 - 3 \frac { 2 } { 3 } + 43
1.25 \times 8=
x 2 + 3 = 5
3 ( m - 5 ) + m
- \frac { 1 } { 3 } x + 2 = - x ^ { 2 } + \frac { 7 } { 2 } x + 2
\frac { 2 ^ { 0 } - 3 ^ { - 2 } } { 2 - 2 ( 2 ) ^ { - 2 } }
\int \csc ^ { 3 } \theta d \theta
\int \sin ^ { 3 } x \cos ^ { 3 } x d x =
7 x ^ { 4 } \cdot 5 x ^ { 5 } =
y= { x }^{ z }
x = \frac{ 3 }{ 5 }
\left. \begin{array} { l } { 5 + 7 + 8 } \\ { - 9 + 17 } \end{array} \right.
a = \begin{bmatrix} \begin{array} { c c c } { 2 } & { 3 } & { 5 } \\ { 5 } & { 4 } & { 1 } \\ { 3 } & { 7 } & { 2 } \end{array} \end{bmatrix}
\left. \begin{array} { l } { x = \frac { z ^ { 3 } } { 6 } } \\ { y = - x ^ { 2 } + \frac { 7 } { 2 } x + 2 } \end{array} \right.
\left. \begin{array} { r } { 4 x + 2 y + 2 z = 18 } \\ { 4 x + 2 y - 3 z = - 7 } \\ { 6 x - 3 y - 5 z = - 1 } \end{array} \right.
45=x
2)2) \sqrt{ 2 \div \div }
8 x ^ { 2 } - 6 x - 9
\frac{ \left( 1013+20 \right) 273 }{ 1013 \left( 273+15 \right) }
e= \frac{ 1 }{ 0 ! }
a + 5 = 5
\left. \begin{array} { l } { 4 x = 1 - {(r - 1)} d }\\ { \text{Solve for } y \text{ where} } \\ { y = r } \end{array} \right.
3x+4 \left( x-2 \right) =1
3x+4 \left( x-2 \right) =-1
\frac { 1 } { x - y } - \frac { 2 y } { x ^ { 2 } - y ^ { 2 } } =
- \frac { 9 } { 20 } \times \frac { 15 } { 14 }
(x+2)(x)(x+1)
2 { x }^{ 2 } +x-6
x ^ { 2 } + 7 = 10
940 \div 60
38 x + 5 y = 19
( 2 ) \lim _ { x \rightarrow \frac { \pi } { 2 } } \frac { \cos x } { \cos \frac { x } { 2 } - \sin \frac { x } { 2 } }
\frac { 2 ^ { \circ } - 2 ^ { - 2 } } { 2 - 2 ( 2 ) ^ { - 2 } }
3 x + 4 ( x - 2 ) =
\frac { 2.6 } { 7.344 }
2 b ^ { 3 } \cdot ( b ^ { 4 } ) ^ { 2 } =
\left\{ \begin{array} { l } { 3 + 1 = - x + b } \\ { \sqrt { 3 } = ( - \sqrt { 3 } - 1 ) x + 6 } \end{array} \right.
\left. \begin{array} { l } { q = a ^ {3} b }\\ { \text{Solve for } r \text{ where} } \\ { r = a } \end{array} \right.
- { 1 }^{ 2 } -x+ \sqrt{ 2 } =0
36 x ^ { 2 } - y ^ { 2 }