Перейти к основному содержанию
Разложить на множители
Tick mark Image
Вычислить
Tick mark Image
График
Викторина
Polynomial

Подобные задачи из результатов поиска в Интернете

Поделиться

a+b=-4 ab=1\left(-12\right)=-12
Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: x^{2}+ax+bx-12. Чтобы найти a и b, настройте систему на ее устранение.
1,-12 2,-6 3,-4
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -12.
1-12=-11 2-6=-4 3-4=-1
Вычислите сумму для каждой пары.
a=-6 b=2
Решение — это пара значений, сумма которых равна -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Перепишите x^{2}-4x-12 как \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Разложите x в первом и 2 в второй группе.
\left(x-6\right)\left(x+2\right)
Вынесите за скобки общий член x-6, используя свойство дистрибутивности.
x^{2}-4x-12=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Возведите -4 в квадрат.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Умножьте -4 на -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Прибавьте 16 к 48.
x=\frac{-\left(-4\right)±8}{2}
Извлеките квадратный корень из 64.
x=\frac{4±8}{2}
Число, противоположное -4, равно 4.
x=\frac{12}{2}
Решите уравнение x=\frac{4±8}{2} при условии, что ± — плюс. Прибавьте 4 к 8.
x=6
Разделите 12 на 2.
x=-\frac{4}{2}
Решите уравнение x=\frac{4±8}{2} при условии, что ± — минус. Вычтите 8 из 4.
x=-2
Разделите -4 на 2.
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте 6 вместо x_{1} и -2 вместо x_{2}.
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.