แยกตัวประกอบ
\left(x-4\right)^{2}
หาค่า
\left(x-4\right)^{2}
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
a+b=-8 ab=1\times 16=16
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น x^{2}+ax+bx+16 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-16 -2,-8 -4,-4
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 16
-1-16=-17 -2-8=-10 -4-4=-8
คำนวณผลรวมสำหรับแต่ละคู่
a=-4 b=-4
โซลูชันเป็นคู่ที่จะให้ผลรวม -8
\left(x^{2}-4x\right)+\left(-4x+16\right)
เขียน x^{2}-8x+16 ใหม่เป็น \left(x^{2}-4x\right)+\left(-4x+16\right)
x\left(x-4\right)-4\left(x-4\right)
แยกตัวประกอบ x ในกลุ่มแรกและ -4 ใน
\left(x-4\right)\left(x-4\right)
แยกตัวประกอบของพจน์ร่วม x-4 โดยใช้คุณสมบัติการแจกแจง
\left(x-4\right)^{2}
เขียนใหม่เป็นทวินามกำลังสอง
factor(x^{2}-8x+16)
ตรีนามนี้มีรูปแบบของตรีนามยกกำลังสอง อาจถูกคูณด้วยตัวประกอบทั่วไป ตรีนามยกกำลังสองสามารถแยกตัวประกอบ โดยการหารากที่สองของพจน์นำ และพจน์ตาม
\sqrt{16}=4
หารากที่สองของพจน์ตาม 16
\left(x-4\right)^{2}
ตรีนามคือ กำลังสองของทวินามที่เป็นผลรวมหรือผลต่างของรากที่สองของพจน์นำและพจน์ตาม ด้วยเครื่องหมายที่กำหนดโดยเครื่องหมายของพจน์กลางของตรีนาม
x^{2}-8x+16=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
ยกกำลังสอง -8
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
คูณ -4 ด้วย 16
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
เพิ่ม 64 ไปยัง -64
x=\frac{-\left(-8\right)±0}{2}
หารากที่สองของ 0
x=\frac{8±0}{2}
ตรงข้ามกับ -8 คือ 8
x^{2}-8x+16=\left(x-4\right)\left(x-4\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 4 สำหรับ x_{1} และ 4 สำหรับ x_{2}