Hopp til hovedinnhold
Microsoft
|
Math Solver
Løse
Praksis
Skuespill
Emner
Pre-Algebra
Bety
Modus
Største felles faktor
Minst vanlige multiplum
Rekkefølge av operasjoner
Fraksjoner
Blandede brøker
Førsteklasses faktorisering
Eksponenter
Radikaler
Algebra
Kombiner som termer
Løse for en variabel
Faktor
Utvide
Vurdere brøker
Lineære formler
Kvadratiske ligninger
Ulikheter
Ligningssystemer
Matriser
Trigonometri
Forenkle
Vurdere
Grafer
Løs formler
Beregning
Derivater
Integraler
Grenser
Algebra innganger
Trigonometri-innganger
Kalkulus innganger
Matrise innganger
Løse
Praksis
Skuespill
Emner
Pre-Algebra
Bety
Modus
Største felles faktor
Minst vanlige multiplum
Rekkefølge av operasjoner
Fraksjoner
Blandede brøker
Førsteklasses faktorisering
Eksponenter
Radikaler
Algebra
Kombiner som termer
Løse for en variabel
Faktor
Utvide
Vurdere brøker
Lineære formler
Kvadratiske ligninger
Ulikheter
Ligningssystemer
Matriser
Trigonometri
Forenkle
Vurdere
Grafer
Løs formler
Beregning
Derivater
Integraler
Grenser
Algebra innganger
Trigonometri-innganger
Kalkulus innganger
Matrise innganger
Grunnleggende
algebra
trigonometri
beregning
statistikk
Matriser
Tegn
Evaluer
\frac{ba^{5}}{2}
Vis løsningstrinn
Løsningstrinn
\frac{a^6b^2}{2ab}
Eliminer ab i både teller og nevner.
\frac{ba^{5}}{2}
Differensier med hensyn til a
\frac{5ba^{4}}{2}
Spørrelek
Algebra
\frac{a^6b^2}{2ab}
Lignende problemer fra nettsøk
18a^3b^2/2ab
http://www.tiger-algebra.com/drill/18a~3b~2/2ab/
18a3b2/2ab Final result : 9a4b3 Step by step solution : Step 1 : b2 Simplify —— 2 Equation at the end of step 1 : b2 (((18 • (a3)) • ——) • a) • b 2 Step 2 :Equation at the end of step 2 : b2 ...
(18a^3b^2)/(2ab^2)
https://www.tiger-algebra.com/drill/(18a~3b~2)/(2ab~2)/
(18a3b2)/(2ab2) Final result : 9a2 Step by step solution : Step 1 :Equation at the end of step 1 : Step 2 :Equation at the end of step 2 : Step 3 : (2•32a3b2) Simplify —————————— 2ab2 ...
(3a^3b^2/2ab)^-2
https://www.tiger-algebra.com/drill/(3a~3b~2/2ab)~-2/
(3a3b2/2ab)(-2) Final result : a(-8)b(-6) • 22 ——————————————— 1 • 32 Reformatting the input : Changes made to your input should not affect the solution: (1): "^-2" was replaced by "^(-2)". Step by ...
is there any analytical way to konw if \frac{1}{2x}+\frac{x}{2} >1 for (1,\infty) or (0,\infty)?
https://math.stackexchange.com/questions/2388674/is-there-any-analytical-way-to-konw-if-frac12x-fracx2-1-for-1-in
Note that 0\leq (a-b)^2 = a^2 - 2ab + b^2 and hence a^2+b^2 \geq 2ab. Therefore, assuming ab>0, we have \frac{a^2+b^2}{2ab} \geq 1.
Reducing fractions?
https://math.stackexchange.com/q/60726
For the first fraction: \begin{align} \frac{2x + 2y}{x + y} &= \frac{2(x + y)}{x + y} \\ &= 2 \text{ assuming } (x+y) \neq 0 \text{ and dividing both numerator and denominator by (x + y)} \end{align} ...
Is there a pair of numbers a,b\in\Bbb{R} such that \frac{1}{a+b}=\frac{1}{a}+\frac{1}{b}?
https://math.stackexchange.com/questions/2402803/is-there-a-pair-of-numbers-a-b-in-bbbr-such-that-frac1ab-frac1a
A simple proof for a^2 + ab + b^2 \neq 0 for non-zero reals a and b is as follows. 2(a^2+ab+b^2) = (a+b)^2 + a^2 + b^2=0 implies a=b=0. Hence, a contradiction.
Flere Elementer
Aksje
Kopi
Kopiert til utklippstavle
\frac{ba^{5}}{2}
Eliminer ab i både teller og nevner.
Lignende problemer
x \cdot x^2 \cdot 3x
n^4 \cdot 2n^2 \cdot n^5
(2a \cdot 3b^2)^2 \cdot c \cdot (2bc^3)^3
\frac{a^6b^2}{2ab}
\frac{x^3y^5}{3x} \times \frac{y^4}{x^2}
\frac{x^3y^5}{3x} \div \frac{y^4}{x^2}
Tilbake til toppen