기본 콘텐츠로 건너뛰기
Microsoft
|
Math Solver
풀이
연습
놀다
주제
선 대수학
의미
모드
최대 공약수
최소 공통 배수
연산 순서
분수
혼합 분수
소인수분해
지수
라디칼
대수학
유사 용어 결합
변수 풀기
인수
확장
분수 평가
선형 방정식
2차 방정식
불균등
방정식 시스템
행렬
삼각법
단순화
평가
그래프
방정식 풀기
미적분학
파생어
적분
한계
Algebra 입력
삼각법 입력
미적분학 입력
행렬 입력
풀이
연습
놀다
주제
선 대수학
의미
모드
최대 공약수
최소 공통 배수
연산 순서
분수
혼합 분수
소인수분해
지수
라디칼
대수학
유사 용어 결합
변수 풀기
인수
확장
분수 평가
선형 방정식
2차 방정식
불균등
방정식 시스템
행렬
삼각법
단순화
평가
그래프
방정식 풀기
미적분학
파생어
적분
한계
Algebra 입력
삼각법 입력
미적분학 입력
행렬 입력
기본
대수학
삼각법
미적분학
통계
행렬
문자
계산
\frac{ba^{5}}{2}
솔루션 단계 보기
해답 단계
\frac{a^6b^2}{2ab}
분자와 분모 모두에서 ab을(를) 상쇄합니다.
\frac{ba^{5}}{2}
a 관련 미분
\frac{5ba^{4}}{2}
퀴즈
Algebra
다음과 비슷한 문제 5개:
\frac{a^6b^2}{2ab}
비슷한 문제의 웹 검색 결과
18a^3b^2/2ab
http://www.tiger-algebra.com/drill/18a~3b~2/2ab/
18a3b2/2ab Final result : 9a4b3 Step by step solution : Step 1 : b2 Simplify —— 2 Equation at the end of step 1 : b2 (((18 • (a3)) • ——) • a) • b 2 Step 2 :Equation at the end of step 2 : b2 ...
(18a^3b^2)/(2ab^2)
https://www.tiger-algebra.com/drill/(18a~3b~2)/(2ab~2)/
(18a3b2)/(2ab2) Final result : 9a2 Step by step solution : Step 1 :Equation at the end of step 1 : Step 2 :Equation at the end of step 2 : Step 3 : (2•32a3b2) Simplify —————————— 2ab2 ...
(3a^3b^2/2ab)^-2
https://www.tiger-algebra.com/drill/(3a~3b~2/2ab)~-2/
(3a3b2/2ab)(-2) Final result : a(-8)b(-6) • 22 ——————————————— 1 • 32 Reformatting the input : Changes made to your input should not affect the solution: (1): "^-2" was replaced by "^(-2)". Step by ...
is there any analytical way to konw if \frac{1}{2x}+\frac{x}{2} >1 for (1,\infty) or (0,\infty)?
https://math.stackexchange.com/questions/2388674/is-there-any-analytical-way-to-konw-if-frac12x-fracx2-1-for-1-in
Note that 0\leq (a-b)^2 = a^2 - 2ab + b^2 and hence a^2+b^2 \geq 2ab. Therefore, assuming ab>0, we have \frac{a^2+b^2}{2ab} \geq 1.
Reducing fractions?
https://math.stackexchange.com/q/60726
For the first fraction: \begin{align} \frac{2x + 2y}{x + y} &= \frac{2(x + y)}{x + y} \\ &= 2 \text{ assuming } (x+y) \neq 0 \text{ and dividing both numerator and denominator by (x + y)} \end{align} ...
Is there a pair of numbers a,b\in\Bbb{R} such that \frac{1}{a+b}=\frac{1}{a}+\frac{1}{b}?
https://math.stackexchange.com/questions/2402803/is-there-a-pair-of-numbers-a-b-in-bbbr-such-that-frac1ab-frac1a
A simple proof for a^2 + ab + b^2 \neq 0 for non-zero reals a and b is as follows. 2(a^2+ab+b^2) = (a+b)^2 + a^2 + b^2=0 implies a=b=0. Hence, a contradiction.
항목 더 보기
공유
복사
클립보드에 복사됨
\frac{ba^{5}}{2}
분자와 분모 모두에서 ab을(를) 상쇄합니다.
유사한 문제
x \cdot x^2 \cdot 3x
n^4 \cdot 2n^2 \cdot n^5
(2a \cdot 3b^2)^2 \cdot c \cdot (2bc^3)^3
\frac{a^6b^2}{2ab}
\frac{x^3y^5}{3x} \times \frac{y^4}{x^2}
\frac{x^3y^5}{3x} \div \frac{y^4}{x^2}
맨 위로 돌아가기