Phân tích thành thừa số
\left(x-4\right)\left(x-3\right)
Tính giá trị
\left(x-4\right)\left(x-3\right)
Đồ thị
Bài kiểm tra
Polynomial
x^2-7x+12
Chia sẻ
Đã sao chép vào bảng tạm
a+b=-7 ab=1\times 12=12
Phân tích biểu thức theo nhóm. Trước tiên, biểu thức cần được viết lại là x^{2}+ax+bx+12. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,-12 -2,-6 -3,-4
Vì ab là dương, a và b có cùng dấu hiệu. Vì a+b là âm, a và b đều là số âm. Liệt kê tất cả cặp số nguyên có tích bằng 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tính tổng của mỗi cặp.
a=-4 b=-3
Nghiệm là cặp có tổng bằng -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Viết lại x^{2}-7x+12 dưới dạng \left(x^{2}-4x\right)+\left(-3x+12\right).
x\left(x-4\right)-3\left(x-4\right)
Phân tích x trong đầu tiên và -3 trong nhóm thứ hai.
\left(x-4\right)\left(x-3\right)
Phân tích số hạng chung x-4 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x^{2}-7x+12=0
Có thể phân tích đa thức bậc hai thành thừa số bằng phép biến đổi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), trong đó x_{1} và x_{2} là nghiệm của phương trình bậc hai ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
Bình phương -7.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
Nhân -4 với 12.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
Cộng 49 vào -48.
x=\frac{-\left(-7\right)±1}{2}
Lấy căn bậc hai của 1.
x=\frac{7±1}{2}
Số đối của số -7 là 7.
x=\frac{8}{2}
Bây giờ, giải phương trình x=\frac{7±1}{2} khi ± là số dương. Cộng 7 vào 1.
x=4
Chia 8 cho 2.
x=\frac{6}{2}
Bây giờ, giải phương trình x=\frac{7±1}{2} khi ± là số âm. Trừ 1 khỏi 7.
x=3
Chia 6 cho 2.
x^{2}-7x+12=\left(x-4\right)\left(x-3\right)
Phân tích biểu thức gốc thành thừa số bằng ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Thế 4 vào x_{1} và 3 vào x_{2}.