x نى يېشىش
x=5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=-10 ab=25
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}-10x+25 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-25 -5,-5
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 25 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-25=-26 -5-5=-10
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-5 b=-5
-10 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x-5\right)\left(x-5\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
\left(x-5\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
x=5
تەڭلىمىنى يېشىش ئۈچۈن x-5=0 نى يېشىڭ.
a+b=-10 ab=1\times 25=25
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx+25 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-25 -5,-5
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 25 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-25=-26 -5-5=-10
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-5 b=-5
-10 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-5x\right)+\left(-5x+25\right)
x^{2}-10x+25 نى \left(x^{2}-5x\right)+\left(-5x+25\right) شەكلىدە قايتا يېزىڭ.
x\left(x-5\right)-5\left(x-5\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن -5 نى چىقىرىڭ.
\left(x-5\right)\left(x-5\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-5 نى چىقىرىڭ.
\left(x-5\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
x=5
تەڭلىمىنى يېشىش ئۈچۈن x-5=0 نى يېشىڭ.
x^{2}-10x+25=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، -10 نى b گە ۋە 25 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
-10 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
-4 نى 25 كە كۆپەيتىڭ.
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
100 نى -100 گە قوشۇڭ.
x=-\frac{-10}{2}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{10}{2}
-10 نىڭ قارشىسى 10 دۇر.
x=5
10 نى 2 كە بۆلۈڭ.
x^{2}-10x+25=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\left(x-5\right)^{2}=0
كۆپەيتكۈچى x^{2}-10x+25. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-5=0 x-5=0
ئاددىيلاشتۇرۇڭ.
x=5 x=5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
x=5
تەڭلىمە يېشىلدى. يېشىش ئۇسۇلى ئوخشاش.
مۇشۇنىڭغا ئوخشاش مەسىلىلەر
x^2-3x=28
x ^ { 2 } - 5 x + 3 y = 20
x^2-10x+25=0
2x^2+12x+40=0
\frac{1}{3}=m+\frac{m-1}{m}
\frac{2}{b-3}-\frac{6}{2b+1}=4