หาค่า z
z=10
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
z^{2}-20z+100=0
เพิ่ม 100 ไปทั้งสองด้าน
a+b=-20 ab=100
เมื่อต้องการแก้สมการปัจจัย z^{2}-20z+100 โดยใช้สูตร z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right) เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 100
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
คำนวณผลรวมสำหรับแต่ละคู่
a=-10 b=-10
โซลูชันเป็นคู่ที่จะให้ผลรวม -20
\left(z-10\right)\left(z-10\right)
เขียนนิพจน์แยกตัวประกอบใหม่ \left(z+a\right)\left(z+b\right) โดยใช้ค่าที่ได้รับ
\left(z-10\right)^{2}
เขียนใหม่เป็นทวินามกำลังสอง
z=10
เมื่อต้องการค้นหาผลเฉลยของสมการ ให้แก้ z-10=0
z^{2}-20z+100=0
เพิ่ม 100 ไปทั้งสองด้าน
a+b=-20 ab=1\times 100=100
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น z^{2}+az+bz+100 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 100
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
คำนวณผลรวมสำหรับแต่ละคู่
a=-10 b=-10
โซลูชันเป็นคู่ที่จะให้ผลรวม -20
\left(z^{2}-10z\right)+\left(-10z+100\right)
เขียน z^{2}-20z+100 ใหม่เป็น \left(z^{2}-10z\right)+\left(-10z+100\right)
z\left(z-10\right)-10\left(z-10\right)
แยกตัวประกอบ z ในกลุ่มแรกและ -10 ใน
\left(z-10\right)\left(z-10\right)
แยกตัวประกอบของพจน์ร่วม z-10 โดยใช้คุณสมบัติการแจกแจง
\left(z-10\right)^{2}
เขียนใหม่เป็นทวินามกำลังสอง
z=10
เมื่อต้องการค้นหาผลเฉลยของสมการ ให้แก้ z-10=0
z^{2}-20z=-100
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
z^{2}-20z-\left(-100\right)=-100-\left(-100\right)
เพิ่ม 100 ไปยังทั้งสองข้างของสมการ
z^{2}-20z-\left(-100\right)=0
ลบ -100 จากตัวเองทำให้เหลือ 0
z^{2}-20z+100=0
ลบ -100 จาก 0
z=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 100}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, -20 แทน b และ 100 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
z=\frac{-\left(-20\right)±\sqrt{400-4\times 100}}{2}
ยกกำลังสอง -20
z=\frac{-\left(-20\right)±\sqrt{400-400}}{2}
คูณ -4 ด้วย 100
z=\frac{-\left(-20\right)±\sqrt{0}}{2}
เพิ่ม 400 ไปยัง -400
z=-\frac{-20}{2}
หารากที่สองของ 0
z=\frac{20}{2}
ตรงข้ามกับ -20 คือ 20
z=10
หาร 20 ด้วย 2
z^{2}-20z=-100
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
z^{2}-20z+\left(-10\right)^{2}=-100+\left(-10\right)^{2}
หาร -20 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -10 จากนั้นเพิ่มกำลังสองของ -10 ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
z^{2}-20z+100=-100+100
ยกกำลังสอง -10
z^{2}-20z+100=0
เพิ่ม -100 ไปยัง 100
\left(z-10\right)^{2}=0
ตัวประกอบz^{2}-20z+100 โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(z-10\right)^{2}}=\sqrt{0}
หารากที่สองของทั้งสองข้างของสมการ
z-10=0 z-10=0
ทำให้ง่ายขึ้น
z=10 z=10
เพิ่ม 10 ไปยังทั้งสองข้างของสมการ
z=10
สมการได้รับการแก้ไขแล้ว ผลเฉลยจะเหมือนกัน
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}