หาค่า x, y
x = \frac{22}{5} = 4\frac{2}{5} = 4.4
y = \frac{27}{5} = 5\frac{2}{5} = 5.4
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
8x+2y=46,7x+3y=47
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
8x+2y=46
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
8x=-2y+46
ลบ 2y จากทั้งสองข้างของสมการ
x=\frac{1}{8}\left(-2y+46\right)
หารทั้งสองข้างด้วย 8
x=-\frac{1}{4}y+\frac{23}{4}
คูณ \frac{1}{8} ด้วย -2y+46
7\left(-\frac{1}{4}y+\frac{23}{4}\right)+3y=47
ทดแทน \frac{-y+23}{4} สำหรับ x ในอีกสมการหนึ่ง 7x+3y=47
-\frac{7}{4}y+\frac{161}{4}+3y=47
คูณ 7 ด้วย \frac{-y+23}{4}
\frac{5}{4}y+\frac{161}{4}=47
เพิ่ม -\frac{7y}{4} ไปยัง 3y
\frac{5}{4}y=\frac{27}{4}
ลบ \frac{161}{4} จากทั้งสองข้างของสมการ
y=\frac{27}{5}
หารทั้งสองข้างของสมการด้วย \frac{5}{4} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{1}{4}\times \frac{27}{5}+\frac{23}{4}
ทดแทน \frac{27}{5} สำหรับ y ใน x=-\frac{1}{4}y+\frac{23}{4} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-\frac{27}{20}+\frac{23}{4}
คูณ -\frac{1}{4} ครั้ง \frac{27}{5} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{22}{5}
เพิ่ม \frac{23}{4} ไปยัง -\frac{27}{20} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{22}{5},y=\frac{27}{5}
ระบบถูกแก้แล้วในขณะนี้
8x+2y=46,7x+3y=47
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}8&2\\7&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}\\\frac{27}{5}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{22}{5},y=\frac{27}{5}
แยกเมทริกซ์องค์ประกอบ x และ y
8x+2y=46,7x+3y=47
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
7\times 8x+7\times 2y=7\times 46,8\times 7x+8\times 3y=8\times 47
เพื่อทำให้ 8x และ 7x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 7 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 8
56x+14y=322,56x+24y=376
ทำให้ง่ายขึ้น
56x-56x+14y-24y=322-376
ลบ 56x+24y=376 จาก 56x+14y=322 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
14y-24y=322-376
เพิ่ม 56x ไปยัง -56x ตัดพจน์ 56x และ -56x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-10y=322-376
เพิ่ม 14y ไปยัง -24y
-10y=-54
เพิ่ม 322 ไปยัง -376
y=\frac{27}{5}
หารทั้งสองข้างด้วย -10
7x+3\times \frac{27}{5}=47
ทดแทน \frac{27}{5} สำหรับ y ใน 7x+3y=47 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
7x+\frac{81}{5}=47
คูณ 3 ด้วย \frac{27}{5}
7x=\frac{154}{5}
ลบ \frac{81}{5} จากทั้งสองข้างของสมการ
x=\frac{22}{5}
หารทั้งสองข้างด้วย 7
x=\frac{22}{5},y=\frac{27}{5}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}