หาค่า y
y=3\left(x-1\right)^{2}-5
หาค่า x
x=-\frac{\sqrt{3y+15}}{3}+1
x=\frac{\sqrt{3y+15}}{3}+1\text{, }y\geq -5
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y=3\left(x^{2}-2x+1\right)-5
ใช้ทฤษฎีบททวินาม \left(a-b\right)^{2}=a^{2}-2ab+b^{2} เพื่อขยาย \left(x-1\right)^{2}
y=3x^{2}-6x+3-5
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 3 ด้วย x^{2}-2x+1
y=3x^{2}-6x-2
ลบ 5 จาก 3 เพื่อรับ -2
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}