ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ
แบบทดสอบ
Polynomial

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=11 ab=1\times 24=24
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องได้รับการเขียนใหม่เป็น x^{2}+ax+bx+24 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้ไข
1,24 2,12 3,8 4,6
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเหมือนกัน เนื่องจาก a+b เป็นบวก a และ b มีทั้งค่าบวก แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 24
1+24=25 2+12=14 3+8=11 4+6=10
คำนวณผลรวมสำหรับแต่ละคู่
a=3 b=8
ผลเฉลยเป็นคู่ที่ให้ผลรวม 11
\left(x^{2}+3x\right)+\left(8x+24\right)
เขียน x^{2}+11x+24 ใหม่เป็น \left(x^{2}+3x\right)+\left(8x+24\right)
x\left(x+3\right)+8\left(x+3\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 8 ในกลุ่มที่สอง
\left(x+3\right)\left(x+8\right)
แยกตัวประกอบของพจน์ร่วม x+3 โดยใช้คุณสมบัติการแจกแจง
x^{2}+11x+24=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-11±\sqrt{11^{2}-4\times 24}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-11±\sqrt{121-4\times 24}}{2}
ยกกำลังสอง 11
x=\frac{-11±\sqrt{121-96}}{2}
คูณ -4 ด้วย 24
x=\frac{-11±\sqrt{25}}{2}
เพิ่ม 121 ไปยัง -96
x=\frac{-11±5}{2}
หารากที่สองของ 25
x=-\frac{6}{2}
ตอนนี้ แก้สมการ x=\frac{-11±5}{2} เมื่อ ± เป็นบวก เพิ่ม -11 ไปยัง 5
x=-3
หาร -6 ด้วย 2
x=-\frac{16}{2}
ตอนนี้ แก้สมการ x=\frac{-11±5}{2} เมื่อ ± เป็นลบ ลบ 5 จาก -11
x=-8
หาร -16 ด้วย 2
x^{2}+11x+24=\left(x-\left(-3\right)\right)\left(x-\left(-8\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ -3 สำหรับ x_{1} และ -8 สำหรับ x_{2}
x^{2}+11x+24=\left(x+3\right)\left(x+8\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q