ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x-y=5,-4x+5y=7
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y+5
เพิ่ม y ไปยังทั้งสองข้างของสมการ
-4\left(y+5\right)+5y=7
ทดแทน y+5 สำหรับ x ในอีกสมการหนึ่ง -4x+5y=7
-4y-20+5y=7
คูณ -4 ด้วย y+5
y-20=7
เพิ่ม -4y ไปยัง 5y
y=27
เพิ่ม 20 ไปยังทั้งสองข้างของสมการ
x=27+5
ทดแทน 27 สำหรับ y ใน x=y+5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=32
เพิ่ม 5 ไปยัง 27
x=32,y=27
ระบบถูกแก้แล้วในขณะนี้
x-y=5,-4x+5y=7
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\-4&5\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-\left(-4\right)\right)}&-\frac{-1}{5-\left(-\left(-4\right)\right)}\\-\frac{-4}{5-\left(-\left(-4\right)\right)}&\frac{1}{5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&1\\4&1\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 5+7\\4\times 5+7\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\27\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=32,y=27
แยกเมทริกซ์องค์ประกอบ x และ y
x-y=5,-4x+5y=7
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-4x-4\left(-1\right)y=-4\times 5,-4x+5y=7
เพื่อทำให้ x และ -4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
-4x+4y=-20,-4x+5y=7
ทำให้ง่ายขึ้น
-4x+4x+4y-5y=-20-7
ลบ -4x+5y=7 จาก -4x+4y=-20 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4y-5y=-20-7
เพิ่ม -4x ไปยัง 4x ตัดพจน์ -4x และ 4x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-y=-20-7
เพิ่ม 4y ไปยัง -5y
-y=-27
เพิ่ม -20 ไปยัง -7
y=27
หารทั้งสองข้างด้วย -1
-4x+5\times 27=7
ทดแทน 27 สำหรับ y ใน -4x+5y=7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-4x+135=7
คูณ 5 ด้วย 27
-4x=-128
ลบ 135 จากทั้งสองข้างของสมการ
x=32
หารทั้งสองข้างด้วย -4
x=32,y=27
ระบบถูกแก้แล้วในขณะนี้