ข้ามไปที่เนื้อหาหลัก
หาค่า x (complex solution)
Tick mark Image
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

±26,±13,±2,±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ -26 และ q หารค่าสัมประสิทธิ์นำ 1 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=2
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
x^{2}-4x+13=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร x^{3}-6x^{2}+21x-26 ด้วย x-2 เพื่อรับ x^{2}-4x+13 แก้สมการที่ผลลัพธ์เท่ากับ 0
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 13}}{2}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 1 สำหรับ a -4 สำหรับ b และ 13 สำหรับ c ในสูตรกำลังสอง
x=\frac{4±\sqrt{-36}}{2}
ทำการคำนวณ
x=2-3i x=2+3i
แก้สมการ x^{2}-4x+13=0 เมื่อ ± เป็นบวก และเมื่อ ± เป็นลบ
x=2 x=2-3i x=2+3i
แสดงรายการโซลูชันที่พบทั้งหมด
±26,±13,±2,±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ -26 และ q หารค่าสัมประสิทธิ์นำ 1 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=2
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
x^{2}-4x+13=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร x^{3}-6x^{2}+21x-26 ด้วย x-2 เพื่อรับ x^{2}-4x+13 แก้สมการที่ผลลัพธ์เท่ากับ 0
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 13}}{2}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 1 สำหรับ a -4 สำหรับ b และ 13 สำหรับ c ในสูตรกำลังสอง
x=\frac{4±\sqrt{-36}}{2}
ทำการคำนวณ
x\in \emptyset
เนื่องจากไม่ได้กำหนดรากที่สองของจำนวนลบในเขตข้อมูลจำนวนจริง จึงไม่มีผลเฉลยอยู่
x=2
แสดงรายการโซลูชันที่พบทั้งหมด