หาค่า
x^{2}
หาอนุพันธ์ของ w.r.t. x
2x
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\frac{x^{3}}{x^{1}}
ใช้กฎของเลขชี้กำลังเพื่อทำนิพจน์
x^{3-1}
เมื่อต้องการหารเลขยกกำลังของฐานเดียวกัน ลบเลขชี้กำลังของตัวส่วนออกจากเลขชี้กำลังของตัวเศษ
x^{2}
ลบ 1 จาก 3
x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})
สำหรับฟังก์ชันที่หาอนุพันธ์ได้สองฟังก์ชัน อนุพันธ์ของผลคูณของสองฟังก์ชันคือ ฟังก์ชันแรกคูณด้วยอนุพันธ์ของฟังก์ชันที่สอง บวกด้วยฟังก์ชันที่สองคูณด้วยอนุพันธ์ของฟังก์ชันแรก
x^{3}\left(-1\right)x^{-1-1}+\frac{1}{x}\times 3x^{3-1}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
x^{3}\left(-1\right)x^{-2}+\frac{1}{x}\times 3x^{2}
ทำให้ง่ายขึ้น
-x^{3-2}+3x^{-1+2}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
-x^{1}+3x^{1}
ทำให้ง่ายขึ้น
-x+3x
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{1}x^{3-1})
เมื่อต้องการหารเลขยกกำลังของฐานเดียวกัน ลบเลขชี้กำลังของตัวส่วนออกจากเลขชี้กำลังของตัวเศษ
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})
ดำเนินการทางคณิตศาสตร์
2x^{2-1}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
2x^{1}
ดำเนินการทางคณิตศาสตร์
2x
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}