ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=-1 ab=1\left(-6\right)=-6
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องได้รับการเขียนใหม่เป็น x^{2}+ax+bx-6 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้ไข
1,-6 2,-3
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้าม เนื่องจาก a+b เป็นค่าลบหมายเลขลบมีค่าสัมบูรณ์มากเกินกว่าค่าบวก แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -6
1-6=-5 2-3=-1
คำนวณผลรวมสำหรับแต่ละคู่
a=-3 b=2
ผลเฉลยเป็นคู่ที่ให้ผลรวม -1
\left(x^{2}-3x\right)+\left(2x-6\right)
เขียน x^{2}-x-6 ใหม่เป็น \left(x^{2}-3x\right)+\left(2x-6\right)
x\left(x-3\right)+2\left(x-3\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 2 ในกลุ่มที่สอง
\left(x-3\right)\left(x+2\right)
แยกตัวประกอบของพจน์ร่วม x-3 โดยใช้คุณสมบัติการแจกแจง
x^{2}-x-6=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
คูณ -4 ด้วย -6
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
เพิ่ม 1 ไปยัง 24
x=\frac{-\left(-1\right)±5}{2}
หารากที่สองของ 25
x=\frac{1±5}{2}
ตรงข้ามกับ -1 คือ 1
x=\frac{6}{2}
ตอนนี้ แก้สมการ x=\frac{1±5}{2} เมื่อ ± เป็นบวก เพิ่ม 1 ไปยัง 5
x=3
หาร 6 ด้วย 2
x=-\frac{4}{2}
ตอนนี้ แก้สมการ x=\frac{1±5}{2} เมื่อ ± เป็นลบ ลบ 5 จาก 1
x=-2
หาร -4 ด้วย 2
x^{2}-x-6=\left(x-3\right)\left(x-\left(-2\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 3 สำหรับ x_{1} และ -2 สำหรับ x_{2}
x^{2}-x-6=\left(x-3\right)\left(x+2\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q