ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ
แบบทดสอบ
Polynomial

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=-8 ab=1\times 15=15
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น x^{2}+ax+bx+15 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-15 -3,-5
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 15
-1-15=-16 -3-5=-8
คำนวณผลรวมสำหรับแต่ละคู่
a=-5 b=-3
โซลูชันเป็นคู่ที่จะให้ผลรวม -8
\left(x^{2}-5x\right)+\left(-3x+15\right)
เขียน x^{2}-8x+15 ใหม่เป็น \left(x^{2}-5x\right)+\left(-3x+15\right)
x\left(x-5\right)-3\left(x-5\right)
แยกตัวประกอบ x ในกลุ่มแรกและ -3 ใน
\left(x-5\right)\left(x-3\right)
แยกตัวประกอบของพจน์ร่วม x-5 โดยใช้คุณสมบัติการแจกแจง
x^{2}-8x+15=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
ยกกำลังสอง -8
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
คูณ -4 ด้วย 15
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
เพิ่ม 64 ไปยัง -60
x=\frac{-\left(-8\right)±2}{2}
หารากที่สองของ 4
x=\frac{8±2}{2}
ตรงข้ามกับ -8 คือ 8
x=\frac{10}{2}
ตอนนี้ แก้สมการ x=\frac{8±2}{2} เมื่อ ± เป็นบวก เพิ่ม 8 ไปยัง 2
x=5
หาร 10 ด้วย 2
x=\frac{6}{2}
ตอนนี้ แก้สมการ x=\frac{8±2}{2} เมื่อ ± เป็นลบ ลบ 2 จาก 8
x=3
หาร 6 ด้วย 2
x^{2}-8x+15=\left(x-5\right)\left(x-3\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 5 สำหรับ x_{1} และ 3 สำหรับ x_{2}