หาค่า x
x=2
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x=-2
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x^{3}-3x^{2}=4\left(2x-3\right)
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x^{2} ด้วย 2x-3
2x^{3}-3x^{2}=8x-12
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 4 ด้วย 2x-3
2x^{3}-3x^{2}-8x=-12
ลบ 8x จากทั้งสองด้าน
2x^{3}-3x^{2}-8x+12=0
เพิ่ม 12 ไปทั้งสองด้าน
±6,±12,±3,±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ 12 และ q หารค่าสัมประสิทธิ์นำ 2 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=2
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
2x^{2}+x-6=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 2x^{3}-3x^{2}-8x+12 ด้วย x-2 เพื่อรับ 2x^{2}+x-6 แก้สมการที่ผลลัพธ์เท่ากับ 0
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-6\right)}}{2\times 2}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 2 สำหรับ a 1 สำหรับ b และ -6 สำหรับ c ในสูตรกำลังสอง
x=\frac{-1±7}{4}
ทำการคำนวณ
x=-2 x=\frac{3}{2}
แก้สมการ 2x^{2}+x-6=0 เมื่อ ± เป็นบวก และเมื่อ ± เป็นลบ
x=2 x=-2 x=\frac{3}{2}
แสดงรายการโซลูชันที่พบทั้งหมด
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}