แยกตัวประกอบ
\left(x+2\right)\left(x+5\right)
หาค่า
\left(x+2\right)\left(x+5\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x^{2}+7x+10
คูณและรวมพจน์ที่เหมือนกัน
a+b=7 ab=1\times 10=10
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น x^{2}+ax+bx+10 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,10 2,5
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 10
1+10=11 2+5=7
คำนวณผลรวมสำหรับแต่ละคู่
a=2 b=5
โซลูชันเป็นคู่ที่จะให้ผลรวม 7
\left(x^{2}+2x\right)+\left(5x+10\right)
เขียน x^{2}+7x+10 ใหม่เป็น \left(x^{2}+2x\right)+\left(5x+10\right)
x\left(x+2\right)+5\left(x+2\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 5 ใน
\left(x+2\right)\left(x+5\right)
แยกตัวประกอบของพจน์ร่วม x+2 โดยใช้คุณสมบัติการแจกแจง
x^{2}+7x+10
รวม 5x และ 2x เพื่อให้ได้รับ 7x
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}