ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x^{2}+2x-8=0
ลบ 8 จากทั้งสองด้าน
a+b=2 ab=-8
เมื่อต้องการแก้สมการปัจจัย x^{2}+2x-8 โดยใช้สูตร x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,8 -2,4
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -8
-1+8=7 -2+4=2
คำนวณผลรวมสำหรับแต่ละคู่
a=-2 b=4
โซลูชันเป็นคู่ที่จะให้ผลรวม 2
\left(x-2\right)\left(x+4\right)
เขียนนิพจน์แยกตัวประกอบใหม่ \left(x+a\right)\left(x+b\right) โดยใช้ค่าที่ได้รับ
x=2 x=-4
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-2=0 และ x+4=0
x^{2}+2x-8=0
ลบ 8 จากทั้งสองด้าน
a+b=2 ab=1\left(-8\right)=-8
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น x^{2}+ax+bx-8 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,8 -2,4
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -8
-1+8=7 -2+4=2
คำนวณผลรวมสำหรับแต่ละคู่
a=-2 b=4
โซลูชันเป็นคู่ที่จะให้ผลรวม 2
\left(x^{2}-2x\right)+\left(4x-8\right)
เขียน x^{2}+2x-8 ใหม่เป็น \left(x^{2}-2x\right)+\left(4x-8\right)
x\left(x-2\right)+4\left(x-2\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 4 ใน
\left(x-2\right)\left(x+4\right)
แยกตัวประกอบของพจน์ร่วม x-2 โดยใช้คุณสมบัติการแจกแจง
x=2 x=-4
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-2=0 และ x+4=0
x^{2}+2x=8
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x^{2}+2x-8=8-8
ลบ 8 จากทั้งสองข้างของสมการ
x^{2}+2x-8=0
ลบ 8 จากตัวเองทำให้เหลือ 0
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, 2 แทน b และ -8 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
ยกกำลังสอง 2
x=\frac{-2±\sqrt{4+32}}{2}
คูณ -4 ด้วย -8
x=\frac{-2±\sqrt{36}}{2}
เพิ่ม 4 ไปยัง 32
x=\frac{-2±6}{2}
หารากที่สองของ 36
x=\frac{4}{2}
ตอนนี้ แก้สมการ x=\frac{-2±6}{2} เมื่อ ± เป็นบวก เพิ่ม -2 ไปยัง 6
x=2
หาร 4 ด้วย 2
x=-\frac{8}{2}
ตอนนี้ แก้สมการ x=\frac{-2±6}{2} เมื่อ ± เป็นลบ ลบ 6 จาก -2
x=-4
หาร -8 ด้วย 2
x=2 x=-4
สมการได้รับการแก้ไขแล้ว
x^{2}+2x=8
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
x^{2}+2x+1^{2}=8+1^{2}
หาร 2 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ 1 จากนั้นเพิ่มกำลังสองของ 1 ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}+2x+1=8+1
ยกกำลังสอง 1
x^{2}+2x+1=9
เพิ่ม 8 ไปยัง 1
\left(x+1\right)^{2}=9
ตัวประกอบx^{2}+2x+1 โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
หารากที่สองของทั้งสองข้างของสมการ
x+1=3 x+1=-3
ทำให้ง่ายขึ้น
x=2 x=-4
ลบ 1 จากทั้งสองข้างของสมการ