ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=19 ab=1\times 78=78
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น x^{2}+ax+bx+78 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,78 2,39 3,26 6,13
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 78
1+78=79 2+39=41 3+26=29 6+13=19
คำนวณผลรวมสำหรับแต่ละคู่
a=6 b=13
โซลูชันเป็นคู่ที่จะให้ผลรวม 19
\left(x^{2}+6x\right)+\left(13x+78\right)
เขียน x^{2}+19x+78 ใหม่เป็น \left(x^{2}+6x\right)+\left(13x+78\right)
x\left(x+6\right)+13\left(x+6\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 13 ใน
\left(x+6\right)\left(x+13\right)
แยกตัวประกอบของพจน์ร่วม x+6 โดยใช้คุณสมบัติการแจกแจง
x^{2}+19x+78=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-19±\sqrt{19^{2}-4\times 78}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-19±\sqrt{361-4\times 78}}{2}
ยกกำลังสอง 19
x=\frac{-19±\sqrt{361-312}}{2}
คูณ -4 ด้วย 78
x=\frac{-19±\sqrt{49}}{2}
เพิ่ม 361 ไปยัง -312
x=\frac{-19±7}{2}
หารากที่สองของ 49
x=-\frac{12}{2}
ตอนนี้ แก้สมการ x=\frac{-19±7}{2} เมื่อ ± เป็นบวก เพิ่ม -19 ไปยัง 7
x=-6
หาร -12 ด้วย 2
x=-\frac{26}{2}
ตอนนี้ แก้สมการ x=\frac{-19±7}{2} เมื่อ ± เป็นลบ ลบ 7 จาก -19
x=-13
หาร -26 ด้วย 2
x^{2}+19x+78=\left(x-\left(-6\right)\right)\left(x-\left(-13\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ -6 สำหรับ x_{1} และ -13 สำหรับ x_{2}
x^{2}+19x+78=\left(x+6\right)\left(x+13\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q