ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x-x^{2}=-1
ลบ x^{2} จากทั้งสองด้าน
x-x^{2}+1=0
เพิ่ม 1 ไปทั้งสองด้าน
-x^{2}+x+1=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ -1 แทน a, 1 แทน b และ 1 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
ยกกำลังสอง 1
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
คูณ -4 ด้วย -1
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
เพิ่ม 1 ไปยัง 4
x=\frac{-1±\sqrt{5}}{-2}
คูณ 2 ด้วย -1
x=\frac{\sqrt{5}-1}{-2}
ตอนนี้ แก้สมการ x=\frac{-1±\sqrt{5}}{-2} เมื่อ ± เป็นบวก เพิ่ม -1 ไปยัง \sqrt{5}
x=\frac{1-\sqrt{5}}{2}
หาร -1+\sqrt{5} ด้วย -2
x=\frac{-\sqrt{5}-1}{-2}
ตอนนี้ แก้สมการ x=\frac{-1±\sqrt{5}}{-2} เมื่อ ± เป็นลบ ลบ \sqrt{5} จาก -1
x=\frac{\sqrt{5}+1}{2}
หาร -1-\sqrt{5} ด้วย -2
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
สมการได้รับการแก้ไขแล้ว
x-x^{2}=-1
ลบ x^{2} จากทั้งสองด้าน
-x^{2}+x=-1
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
\frac{-x^{2}+x}{-1}=-\frac{1}{-1}
หารทั้งสองข้างด้วย -1
x^{2}+\frac{1}{-1}x=-\frac{1}{-1}
หารด้วย -1 เลิกทำการคูณด้วย -1
x^{2}-x=-\frac{1}{-1}
หาร 1 ด้วย -1
x^{2}-x=1
หาร -1 ด้วย -1
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
หาร -1 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{1}{2} จากนั้นเพิ่มกำลังสองของ -\frac{1}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
ยกกำลังสอง -\frac{1}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-x+\frac{1}{4}=\frac{5}{4}
เพิ่ม 1 ไปยัง \frac{1}{4}
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
ตัวประกอบ x^{2}-x+\frac{1}{4} โดยทั่วไป เมื่อ x^{2}+bx+c เป็นกำลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น \left(x+\frac{b}{2}\right)^{2} ได้เสมอ
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
ทำให้ง่ายขึ้น
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
เพิ่ม \frac{1}{2} ไปยังทั้งสองข้างของสมการ