ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x\left(1+x\right)=0
แยกตัวประกอบ x
x=0 x=-1
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x=0 และ 1+x=0
x^{2}+x=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-1±\sqrt{1^{2}}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, 1 แทน b และ 0 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-1±1}{2}
หารากที่สองของ 1^{2}
x=\frac{0}{2}
ตอนนี้ แก้สมการ x=\frac{-1±1}{2} เมื่อ ± เป็นบวก เพิ่ม -1 ไปยัง 1
x=0
หาร 0 ด้วย 2
x=-\frac{2}{2}
ตอนนี้ แก้สมการ x=\frac{-1±1}{2} เมื่อ ± เป็นลบ ลบ 1 จาก -1
x=-1
หาร -2 ด้วย 2
x=0 x=-1
สมการได้รับการแก้ไขแล้ว
x^{2}+x=0
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
หาร 1 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ \frac{1}{2} จากนั้นเพิ่มกำลังสองของ \frac{1}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}+x+\frac{1}{4}=\frac{1}{4}
ยกกำลังสอง \frac{1}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
ตัวประกอบx^{2}+x+\frac{1}{4} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
หารากที่สองของทั้งสองข้างของสมการ
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
ทำให้ง่ายขึ้น
x=0 x=-1
ลบ \frac{1}{2} จากทั้งสองข้างของสมการ