หาค่า w
w = \frac{\sqrt{33} + 1}{2} \approx 3.372281323
w=\frac{1-\sqrt{33}}{2}\approx -2.372281323
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
w^{2}-w=8
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
w^{2}-w-8=8-8
ลบ 8 จากทั้งสองข้างของสมการ
w^{2}-w-8=0
ลบ 8 จากตัวเองทำให้เหลือ 0
w=\frac{-\left(-1\right)±\sqrt{1-4\left(-8\right)}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, -1 แทน b และ -8 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
w=\frac{-\left(-1\right)±\sqrt{1+32}}{2}
คูณ -4 ด้วย -8
w=\frac{-\left(-1\right)±\sqrt{33}}{2}
เพิ่ม 1 ไปยัง 32
w=\frac{1±\sqrt{33}}{2}
ตรงข้ามกับ -1 คือ 1
w=\frac{\sqrt{33}+1}{2}
ตอนนี้ แก้สมการ w=\frac{1±\sqrt{33}}{2} เมื่อ ± เป็นบวก เพิ่ม 1 ไปยัง \sqrt{33}
w=\frac{1-\sqrt{33}}{2}
ตอนนี้ แก้สมการ w=\frac{1±\sqrt{33}}{2} เมื่อ ± เป็นลบ ลบ \sqrt{33} จาก 1
w=\frac{\sqrt{33}+1}{2} w=\frac{1-\sqrt{33}}{2}
สมการได้รับการแก้ไขแล้ว
w^{2}-w=8
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
w^{2}-w+\left(-\frac{1}{2}\right)^{2}=8+\left(-\frac{1}{2}\right)^{2}
หาร -1 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{1}{2} จากนั้นเพิ่มกำลังสองของ -\frac{1}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
w^{2}-w+\frac{1}{4}=8+\frac{1}{4}
ยกกำลังสอง -\frac{1}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
w^{2}-w+\frac{1}{4}=\frac{33}{4}
เพิ่ม 8 ไปยัง \frac{1}{4}
\left(w-\frac{1}{2}\right)^{2}=\frac{33}{4}
ตัวประกอบw^{2}-w+\frac{1}{4} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(w-\frac{1}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
หารากที่สองของทั้งสองข้างของสมการ
w-\frac{1}{2}=\frac{\sqrt{33}}{2} w-\frac{1}{2}=-\frac{\sqrt{33}}{2}
ทำให้ง่ายขึ้น
w=\frac{\sqrt{33}+1}{2} w=\frac{1-\sqrt{33}}{2}
เพิ่ม \frac{1}{2} ไปยังทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}