หาค่า a
\left\{\begin{matrix}a=\frac{r}{\sin(3ϕ)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }ϕ=\frac{\pi n_{1}}{3}\\a\in \mathrm{R}\text{, }&r=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }ϕ=\frac{\pi n_{1}}{3}\end{matrix}\right.
หาค่า r
r=a\sin(3ϕ)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
a\sin(3ϕ)=r
สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
\sin(3ϕ)a=r
สมการอยู่ในรูปแบบมาตรฐาน
\frac{\sin(3ϕ)a}{\sin(3ϕ)}=\frac{r}{\sin(3ϕ)}
หารทั้งสองข้างด้วย \sin(3ϕ)
a=\frac{r}{\sin(3ϕ)}
หารด้วย \sin(3ϕ) เลิกทำการคูณด้วย \sin(3ϕ)
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}