ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=-10 ab=1\times 21=21
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น q^{2}+aq+bq+21 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-21 -3,-7
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 21
-1-21=-22 -3-7=-10
คำนวณผลรวมสำหรับแต่ละคู่
a=-7 b=-3
โซลูชันเป็นคู่ที่จะให้ผลรวม -10
\left(q^{2}-7q\right)+\left(-3q+21\right)
เขียน q^{2}-10q+21 ใหม่เป็น \left(q^{2}-7q\right)+\left(-3q+21\right)
q\left(q-7\right)-3\left(q-7\right)
แยกตัวประกอบ q ในกลุ่มแรกและ -3 ใน
\left(q-7\right)\left(q-3\right)
แยกตัวประกอบของพจน์ร่วม q-7 โดยใช้คุณสมบัติการแจกแจง
q^{2}-10q+21=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
q=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 21}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
q=\frac{-\left(-10\right)±\sqrt{100-4\times 21}}{2}
ยกกำลังสอง -10
q=\frac{-\left(-10\right)±\sqrt{100-84}}{2}
คูณ -4 ด้วย 21
q=\frac{-\left(-10\right)±\sqrt{16}}{2}
เพิ่ม 100 ไปยัง -84
q=\frac{-\left(-10\right)±4}{2}
หารากที่สองของ 16
q=\frac{10±4}{2}
ตรงข้ามกับ -10 คือ 10
q=\frac{14}{2}
ตอนนี้ แก้สมการ q=\frac{10±4}{2} เมื่อ ± เป็นบวก เพิ่ม 10 ไปยัง 4
q=7
หาร 14 ด้วย 2
q=\frac{6}{2}
ตอนนี้ แก้สมการ q=\frac{10±4}{2} เมื่อ ± เป็นลบ ลบ 4 จาก 10
q=3
หาร 6 ด้วย 2
q^{2}-10q+21=\left(q-7\right)\left(q-3\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 7 สำหรับ x_{1} และ 3 สำหรับ x_{2}