แยกตัวประกอบ
\left(k+1\right)\left(k+4\right)
หาค่า
\left(k+1\right)\left(k+4\right)
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
a+b=5 ab=1\times 4=4
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น k^{2}+ak+bk+4 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,4 2,2
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 4
1+4=5 2+2=4
คำนวณผลรวมสำหรับแต่ละคู่
a=1 b=4
โซลูชันเป็นคู่ที่จะให้ผลรวม 5
\left(k^{2}+k\right)+\left(4k+4\right)
เขียน k^{2}+5k+4 ใหม่เป็น \left(k^{2}+k\right)+\left(4k+4\right)
k\left(k+1\right)+4\left(k+1\right)
แยกตัวประกอบ k ในกลุ่มแรกและ 4 ใน
\left(k+1\right)\left(k+4\right)
แยกตัวประกอบของพจน์ร่วม k+1 โดยใช้คุณสมบัติการแจกแจง
k^{2}+5k+4=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
k=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
k=\frac{-5±\sqrt{25-4\times 4}}{2}
ยกกำลังสอง 5
k=\frac{-5±\sqrt{25-16}}{2}
คูณ -4 ด้วย 4
k=\frac{-5±\sqrt{9}}{2}
เพิ่ม 25 ไปยัง -16
k=\frac{-5±3}{2}
หารากที่สองของ 9
k=-\frac{2}{2}
ตอนนี้ แก้สมการ k=\frac{-5±3}{2} เมื่อ ± เป็นบวก เพิ่ม -5 ไปยัง 3
k=-1
หาร -2 ด้วย 2
k=-\frac{8}{2}
ตอนนี้ แก้สมการ k=\frac{-5±3}{2} เมื่อ ± เป็นลบ ลบ 3 จาก -5
k=-4
หาร -8 ด้วย 2
k^{2}+5k+4=\left(k-\left(-1\right)\right)\left(k-\left(-4\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ -1 สำหรับ x_{1} และ -4 สำหรับ x_{2}
k^{2}+5k+4=\left(k+1\right)\left(k+4\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}