ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\left(x-4\right)\left(x^{2}+2x-3\right)
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ 12 และ q หารค่าสัมประสิทธิ์นำ 1 รากดังกล่าวคือ 4 แยกตัวประกอบพหุนามโดยการหารด้วย x-4
a+b=2 ab=1\left(-3\right)=-3
พิจารณา x^{2}+2x-3 แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น x^{2}+ax+bx-3 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
a=-1 b=3
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(x^{2}-x\right)+\left(3x-3\right)
เขียน x^{2}+2x-3 ใหม่เป็น \left(x^{2}-x\right)+\left(3x-3\right)
x\left(x-1\right)+3\left(x-1\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 3 ใน
\left(x-1\right)\left(x+3\right)
แยกตัวประกอบของพจน์ร่วม x-1 โดยใช้คุณสมบัติการแจกแจง
\left(x-4\right)\left(x-1\right)\left(x+3\right)
เขียนนิพจน์ที่แยกตัวประกอบสมบูรณ์ใหม่