หาค่า x (complex solution)
x=\frac{7+\sqrt{35}i}{6}
x=\frac{-\sqrt{35}i+7}{6}
หาค่า g (complex solution)
g\in \mathrm{C}
x=\frac{7+\sqrt{35}i}{6}\text{ or }x=\frac{-\sqrt{35}i+7}{6}
กราฟ
แบบทดสอบ
Algebra
ปัญหา 5 ข้อที่คล้ายคลึงกับ:
f ( x ) = 3 x ^ { 2 } - 5 x - 2 \quad 0 \quad g ( x ) = 2 x - 7
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3x^{2}-5x-0gx=2x-7
คูณ 2 และ 0 เพื่อรับ 0
3x^{2}-5x-0=2x-7
สิ่งใดคูณกับศูนย์จะได้ผลเป็นศูนย์
3x^{2}-5x-0-2x=-7
ลบ 2x จากทั้งสองด้าน
3x^{2}-5x-0-2x+7=0
เพิ่ม 7 ไปทั้งสองด้าน
3x^{2}-5x-2x+7=0
เรียงลำดับพจน์ใหม่
3x^{2}-7x+7=0
รวม -5x และ -2x เพื่อให้ได้รับ -7x
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\times 7}}{2\times 3}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 3 แทน a, -7 แทน b และ 7 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\times 7}}{2\times 3}
ยกกำลังสอง -7
x=\frac{-\left(-7\right)±\sqrt{49-12\times 7}}{2\times 3}
คูณ -4 ด้วย 3
x=\frac{-\left(-7\right)±\sqrt{49-84}}{2\times 3}
คูณ -12 ด้วย 7
x=\frac{-\left(-7\right)±\sqrt{-35}}{2\times 3}
เพิ่ม 49 ไปยัง -84
x=\frac{-\left(-7\right)±\sqrt{35}i}{2\times 3}
หารากที่สองของ -35
x=\frac{7±\sqrt{35}i}{2\times 3}
ตรงข้ามกับ -7 คือ 7
x=\frac{7±\sqrt{35}i}{6}
คูณ 2 ด้วย 3
x=\frac{7+\sqrt{35}i}{6}
ตอนนี้ แก้สมการ x=\frac{7±\sqrt{35}i}{6} เมื่อ ± เป็นบวก เพิ่ม 7 ไปยัง i\sqrt{35}
x=\frac{-\sqrt{35}i+7}{6}
ตอนนี้ แก้สมการ x=\frac{7±\sqrt{35}i}{6} เมื่อ ± เป็นลบ ลบ i\sqrt{35} จาก 7
x=\frac{7+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i+7}{6}
สมการได้รับการแก้ไขแล้ว
3x^{2}-5x-0gx=2x-7
คูณ 2 และ 0 เพื่อรับ 0
3x^{2}-5x-0=2x-7
สิ่งใดคูณกับศูนย์จะได้ผลเป็นศูนย์
3x^{2}-5x-0-2x=-7
ลบ 2x จากทั้งสองด้าน
3x^{2}-5x-2x=-7
เรียงลำดับพจน์ใหม่
3x^{2}-7x=-7
รวม -5x และ -2x เพื่อให้ได้รับ -7x
\frac{3x^{2}-7x}{3}=-\frac{7}{3}
หารทั้งสองข้างด้วย 3
x^{2}-\frac{7}{3}x=-\frac{7}{3}
หารด้วย 3 เลิกทำการคูณด้วย 3
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=-\frac{7}{3}+\left(-\frac{7}{6}\right)^{2}
หาร -\frac{7}{3} สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{7}{6} จากนั้นเพิ่มกำลังสองของ -\frac{7}{6} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{7}{3}+\frac{49}{36}
ยกกำลังสอง -\frac{7}{6} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{35}{36}
เพิ่ม -\frac{7}{3} ไปยัง \frac{49}{36} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
\left(x-\frac{7}{6}\right)^{2}=-\frac{35}{36}
ตัวประกอบx^{2}-\frac{7}{3}x+\frac{49}{36} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{-\frac{35}{36}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{7}{6}=\frac{\sqrt{35}i}{6} x-\frac{7}{6}=-\frac{\sqrt{35}i}{6}
ทำให้ง่ายขึ้น
x=\frac{7+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i+7}{6}
เพิ่ม \frac{7}{6} ไปยังทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}