แยกตัวประกอบ
x\left(1-x\right)\left(4x+1\right)
หาค่า
x\left(1-x\right)\left(4x+1\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x\left(3x+1-4x^{2}\right)
แยกตัวประกอบ x
-4x^{2}+3x+1
พิจารณา 3x+1-4x^{2} จัดเรียงพหุนามให้อยู่ในรูปแบบมาตรฐาน วางตามลำดับจากดีกรีที่มากที่สุดไปหาน้อยที่สุด
a+b=3 ab=-4=-4
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น -4x^{2}+ax+bx+1 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,4 -2,2
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -4
-1+4=3 -2+2=0
คำนวณผลรวมสำหรับแต่ละคู่
a=4 b=-1
โซลูชันเป็นคู่ที่จะให้ผลรวม 3
\left(-4x^{2}+4x\right)+\left(-x+1\right)
เขียน -4x^{2}+3x+1 ใหม่เป็น \left(-4x^{2}+4x\right)+\left(-x+1\right)
4x\left(-x+1\right)-x+1
แยกตัวประกอบ 4x ใน -4x^{2}+4x
\left(-x+1\right)\left(4x+1\right)
แยกตัวประกอบของพจน์ร่วม -x+1 โดยใช้คุณสมบัติการแจกแจง
x\left(-x+1\right)\left(4x+1\right)
เขียนนิพจน์ที่แยกตัวประกอบสมบูรณ์ใหม่
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}