ข้ามไปที่เนื้อหาหลัก
หาค่า f
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{1}{f}x=\frac{2x^{2}+1}{\sqrt{x}}
เรียงลำดับพจน์ใหม่
1x=fx^{-\frac{1}{2}}\left(2x^{2}+1\right)
ตัวแปร f ไม่สามารถเท่ากับ 0 เนื่องจากไม่ได้กำหนดให้หารด้วยศูนย์ได้ คูณทั้งสองข้างของสมการด้วย f
1x=2fx^{-\frac{1}{2}}x^{2}+fx^{-\frac{1}{2}}
ใช้คุณสมบัติการแจกแจงเพื่อคูณ fx^{-\frac{1}{2}} ด้วย 2x^{2}+1
1x=2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน บวกเลขชี้กำลังของจำนวนเหล่านั้นเข้าด้วยกัน บวก -\frac{1}{2} กับ 2 ให้ได้ \frac{3}{2}
2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}=1x
สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
2fx^{\frac{3}{2}}+x^{-\frac{1}{2}}f=x
เรียงลำดับพจน์ใหม่
\left(2x^{\frac{3}{2}}+x^{-\frac{1}{2}}\right)f=x
รวมทั้งหมดพจน์ที่มี f
\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f=x
สมการอยู่ในรูปแบบมาตรฐาน
\frac{\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
หารทั้งสองข้างด้วย 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}
f=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
หารด้วย 2x^{\frac{3}{2}}+x^{-\frac{1}{2}} เลิกทำการคูณด้วย 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}
หาร x ด้วย 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}\text{, }f\neq 0
ตัวแปร f ไม่สามารถเท่ากับ 0