แยกตัวประกอบ
\left(1-x\right)\left(x-14\right)
หาค่า
\left(1-x\right)\left(x-14\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
a+b=15 ab=-\left(-14\right)=14
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น -x^{2}+ax+bx-14 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,14 2,7
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 14
1+14=15 2+7=9
คำนวณผลรวมสำหรับแต่ละคู่
a=14 b=1
โซลูชันเป็นคู่ที่จะให้ผลรวม 15
\left(-x^{2}+14x\right)+\left(x-14\right)
เขียน -x^{2}+15x-14 ใหม่เป็น \left(-x^{2}+14x\right)+\left(x-14\right)
-x\left(x-14\right)+x-14
แยกตัวประกอบ -x ใน -x^{2}+14x
\left(x-14\right)\left(-x+1\right)
แยกตัวประกอบของพจน์ร่วม x-14 โดยใช้คุณสมบัติการแจกแจง
-x^{2}+15x-14=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-15±\sqrt{15^{2}-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-15±\sqrt{225-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
ยกกำลังสอง 15
x=\frac{-15±\sqrt{225+4\left(-14\right)}}{2\left(-1\right)}
คูณ -4 ด้วย -1
x=\frac{-15±\sqrt{225-56}}{2\left(-1\right)}
คูณ 4 ด้วย -14
x=\frac{-15±\sqrt{169}}{2\left(-1\right)}
เพิ่ม 225 ไปยัง -56
x=\frac{-15±13}{2\left(-1\right)}
หารากที่สองของ 169
x=\frac{-15±13}{-2}
คูณ 2 ด้วย -1
x=-\frac{2}{-2}
ตอนนี้ แก้สมการ x=\frac{-15±13}{-2} เมื่อ ± เป็นบวก เพิ่ม -15 ไปยัง 13
x=1
หาร -2 ด้วย -2
x=-\frac{28}{-2}
ตอนนี้ แก้สมการ x=\frac{-15±13}{-2} เมื่อ ± เป็นลบ ลบ 13 จาก -15
x=14
หาร -28 ด้วย -2
-x^{2}+15x-14=-\left(x-1\right)\left(x-14\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 1 สำหรับ x_{1} และ 14 สำหรับ x_{2}
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}