ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=1 ab=2\left(-15\right)=-30
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น 2x^{2}+ax+bx-15 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,30 -2,15 -3,10 -5,6
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -30
-1+30=29 -2+15=13 -3+10=7 -5+6=1
คำนวณผลรวมสำหรับแต่ละคู่
a=-5 b=6
โซลูชันเป็นคู่ที่จะให้ผลรวม 1
\left(2x^{2}-5x\right)+\left(6x-15\right)
เขียน 2x^{2}+x-15 ใหม่เป็น \left(2x^{2}-5x\right)+\left(6x-15\right)
x\left(2x-5\right)+3\left(2x-5\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 3 ใน
\left(2x-5\right)\left(x+3\right)
แยกตัวประกอบของพจน์ร่วม 2x-5 โดยใช้คุณสมบัติการแจกแจง
2x^{2}+x-15=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-15\right)}}{2\times 2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-1±\sqrt{1-4\times 2\left(-15\right)}}{2\times 2}
ยกกำลังสอง 1
x=\frac{-1±\sqrt{1-8\left(-15\right)}}{2\times 2}
คูณ -4 ด้วย 2
x=\frac{-1±\sqrt{1+120}}{2\times 2}
คูณ -8 ด้วย -15
x=\frac{-1±\sqrt{121}}{2\times 2}
เพิ่ม 1 ไปยัง 120
x=\frac{-1±11}{2\times 2}
หารากที่สองของ 121
x=\frac{-1±11}{4}
คูณ 2 ด้วย 2
x=\frac{10}{4}
ตอนนี้ แก้สมการ x=\frac{-1±11}{4} เมื่อ ± เป็นบวก เพิ่ม -1 ไปยัง 11
x=\frac{5}{2}
ทำเศษส่วน \frac{10}{4} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 2
x=-\frac{12}{4}
ตอนนี้ แก้สมการ x=\frac{-1±11}{4} เมื่อ ± เป็นลบ ลบ 11 จาก -1
x=-3
หาร -12 ด้วย 4
2x^{2}+x-15=2\left(x-\frac{5}{2}\right)\left(x-\left(-3\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ \frac{5}{2} สำหรับ x_{1} และ -3 สำหรับ x_{2}
2x^{2}+x-15=2\left(x-\frac{5}{2}\right)\left(x+3\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
2x^{2}+x-15=2\times \frac{2x-5}{2}\left(x+3\right)
ลบ \frac{5}{2} จาก x โดยการค้นหาตัวหารร่วมและลบเศษออก แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
2x^{2}+x-15=\left(2x-5\right)\left(x+3\right)
ยกเลิกการหาตัวหารร่วม 2 ใน 2 และ 2