หาค่า D
D=\left(x-6\right)\left(3x-1\right)
หาค่า x (complex solution)
x=\frac{\sqrt{12D+289}+19}{6}
x=\frac{-\sqrt{12D+289}+19}{6}
หาค่า x
x=\frac{\sqrt{12D+289}+19}{6}
x=\frac{-\sqrt{12D+289}+19}{6}\text{, }D\geq -\frac{289}{12}
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
D=9x^{2}-1-\left(6x^{2}+19x-7\right)
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 3x-1 ด้วย 2x+7 และรวมพจน์ที่เหมือนกัน
D=9x^{2}-1-6x^{2}-19x+7
เมื่อต้องการค้นหาค่าตรงข้ามของ 6x^{2}+19x-7 ให้ค้นหาค่าตรงข้ามของแต่ละพจน์
D=3x^{2}-1-19x+7
รวม 9x^{2} และ -6x^{2} เพื่อให้ได้รับ 3x^{2}
D=3x^{2}+6-19x
เพิ่ม -1 และ 7 เพื่อให้ได้รับ 6
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}