แยกตัวประกอบ
3\left(t+1\right)\left(t+5\right)t^{2}
หาค่า
3\left(t+1\right)\left(t+5\right)t^{2}
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3\left(t^{4}+6t^{3}+5t^{2}\right)
แยกตัวประกอบ 3
t^{2}\left(t^{2}+6t+5\right)
พิจารณา t^{4}+6t^{3}+5t^{2} แยกตัวประกอบ t^{2}
a+b=6 ab=1\times 5=5
พิจารณา t^{2}+6t+5 แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น t^{2}+at+bt+5 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
a=1 b=5
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(t^{2}+t\right)+\left(5t+5\right)
เขียน t^{2}+6t+5 ใหม่เป็น \left(t^{2}+t\right)+\left(5t+5\right)
t\left(t+1\right)+5\left(t+1\right)
แยกตัวประกอบ t ในกลุ่มแรกและ 5 ใน
\left(t+1\right)\left(t+5\right)
แยกตัวประกอบของพจน์ร่วม t+1 โดยใช้คุณสมบัติการแจกแจง
3t^{2}\left(t+1\right)\left(t+5\right)
เขียนนิพจน์ที่แยกตัวประกอบสมบูรณ์ใหม่
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}