ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=6 ab=9\times 1=9
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น 9x^{2}+ax+bx+1 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,9 3,3
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 9
1+9=10 3+3=6
คำนวณผลรวมสำหรับแต่ละคู่
a=3 b=3
โซลูชันเป็นคู่ที่จะให้ผลรวม 6
\left(9x^{2}+3x\right)+\left(3x+1\right)
เขียน 9x^{2}+6x+1 ใหม่เป็น \left(9x^{2}+3x\right)+\left(3x+1\right)
3x\left(3x+1\right)+3x+1
แยกตัวประกอบ 3x ใน 9x^{2}+3x
\left(3x+1\right)\left(3x+1\right)
แยกตัวประกอบของพจน์ร่วม 3x+1 โดยใช้คุณสมบัติการแจกแจง
\left(3x+1\right)^{2}
เขียนใหม่เป็นทวินามกำลังสอง
factor(9x^{2}+6x+1)
ตรีนามนี้มีรูปแบบของตรีนามยกกำลังสอง อาจถูกคูณด้วยตัวประกอบทั่วไป ตรีนามยกกำลังสองสามารถแยกตัวประกอบ โดยการหารากที่สองของพจน์นำ และพจน์ตาม
gcf(9,6,1)=1
ค้นหาตัวหารร่วมมากของสัมประสิทธิ์
\sqrt{9x^{2}}=3x
หารากที่สองของพจน์นำ 9x^{2}
\left(3x+1\right)^{2}
ตรีนามคือ กำลังสองของทวินามที่เป็นผลรวมหรือผลต่างของรากที่สองของพจน์นำและพจน์ตาม ด้วยเครื่องหมายที่กำหนดโดยเครื่องหมายของพจน์กลางของตรีนาม
9x^{2}+6x+1=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2\times 9}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-6±\sqrt{36-4\times 9}}{2\times 9}
ยกกำลังสอง 6
x=\frac{-6±\sqrt{36-36}}{2\times 9}
คูณ -4 ด้วย 9
x=\frac{-6±\sqrt{0}}{2\times 9}
เพิ่ม 36 ไปยัง -36
x=\frac{-6±0}{2\times 9}
หารากที่สองของ 0
x=\frac{-6±0}{18}
คูณ 2 ด้วย 9
9x^{2}+6x+1=9\left(x-\left(-\frac{1}{3}\right)\right)\left(x-\left(-\frac{1}{3}\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ -\frac{1}{3} สำหรับ x_{1} และ -\frac{1}{3} สำหรับ x_{2}
9x^{2}+6x+1=9\left(x+\frac{1}{3}\right)\left(x+\frac{1}{3}\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
9x^{2}+6x+1=9\times \frac{3x+1}{3}\left(x+\frac{1}{3}\right)
เพิ่ม \frac{1}{3} ไปยัง x ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
9x^{2}+6x+1=9\times \frac{3x+1}{3}\times \frac{3x+1}{3}
เพิ่ม \frac{1}{3} ไปยัง x ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
9x^{2}+6x+1=9\times \frac{\left(3x+1\right)\left(3x+1\right)}{3\times 3}
คูณ \frac{3x+1}{3} ครั้ง \frac{3x+1}{3} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
9x^{2}+6x+1=9\times \frac{\left(3x+1\right)\left(3x+1\right)}{9}
คูณ 3 ด้วย 3
9x^{2}+6x+1=\left(3x+1\right)\left(3x+1\right)
ยกเลิกการหาตัวหารร่วม 9 ใน 9 และ 9