ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x\left(6x+1\right)
แยกตัวประกอบ x
6x^{2}+x=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-1±\sqrt{1^{2}}}{2\times 6}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-1±1}{2\times 6}
หารากที่สองของ 1^{2}
x=\frac{-1±1}{12}
คูณ 2 ด้วย 6
x=\frac{0}{12}
ตอนนี้ แก้สมการ x=\frac{-1±1}{12} เมื่อ ± เป็นบวก เพิ่ม -1 ไปยัง 1
x=0
หาร 0 ด้วย 12
x=-\frac{2}{12}
ตอนนี้ แก้สมการ x=\frac{-1±1}{12} เมื่อ ± เป็นลบ ลบ 1 จาก -1
x=-\frac{1}{6}
ทำเศษส่วน \frac{-2}{12} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 2
6x^{2}+x=6x\left(x-\left(-\frac{1}{6}\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 0 สำหรับ x_{1} และ -\frac{1}{6} สำหรับ x_{2}
6x^{2}+x=6x\left(x+\frac{1}{6}\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
6x^{2}+x=6x\times \frac{6x+1}{6}
เพิ่ม \frac{1}{6} ไปยัง x ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
6x^{2}+x=x\left(6x+1\right)
ยกเลิกการหาตัวหารร่วม 6 ใน 6 และ 6