หาค่า x
x=-\frac{131}{540}\approx -0.242592593
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
54x+14=\frac{9}{10}
ทำเศษส่วน \frac{27}{30} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 3
54x=\frac{9}{10}-14
ลบ 14 จากทั้งสองด้าน
54x=\frac{9}{10}-\frac{140}{10}
แปลง 14 เป็นเศษส่วน \frac{140}{10}
54x=\frac{9-140}{10}
เนื่องจาก \frac{9}{10} และ \frac{140}{10} มีตัวส่วนเดียวกัน ให้ลบโดยการลบตัวเศษ
54x=-\frac{131}{10}
ลบ 140 จาก 9 เพื่อรับ -131
x=\frac{-\frac{131}{10}}{54}
หารทั้งสองข้างด้วย 54
x=\frac{-131}{10\times 54}
แสดง \frac{-\frac{131}{10}}{54} เป็นเศษส่วนเดียวกัน
x=\frac{-131}{540}
คูณ 10 และ 54 เพื่อรับ 540
x=-\frac{131}{540}
เศษส่วน \frac{-131}{540} สามารถเขียนใหม่เป็น -\frac{131}{540} โดยเอาเครื่องหมายลบออก
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}