ข้ามไปที่เนื้อหาหลัก
หาค่า x (complex solution)
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

4xx+7=3x
ตัวแปร x ไม่สามารถเท่ากับ 0 เนื่องจากไม่ได้กำหนดให้หารด้วยศูนย์ได้ คูณทั้งสองข้างของสมการด้วย x
4x^{2}+7=3x
คูณ x และ x เพื่อรับ x^{2}
4x^{2}+7-3x=0
ลบ 3x จากทั้งสองด้าน
4x^{2}-3x+7=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\times 7}}{2\times 4}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 4 แทน a, -3 แทน b และ 7 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-3\right)±\sqrt{9-4\times 4\times 7}}{2\times 4}
ยกกำลังสอง -3
x=\frac{-\left(-3\right)±\sqrt{9-16\times 7}}{2\times 4}
คูณ -4 ด้วย 4
x=\frac{-\left(-3\right)±\sqrt{9-112}}{2\times 4}
คูณ -16 ด้วย 7
x=\frac{-\left(-3\right)±\sqrt{-103}}{2\times 4}
เพิ่ม 9 ไปยัง -112
x=\frac{-\left(-3\right)±\sqrt{103}i}{2\times 4}
หารากที่สองของ -103
x=\frac{3±\sqrt{103}i}{2\times 4}
ตรงข้ามกับ -3 คือ 3
x=\frac{3±\sqrt{103}i}{8}
คูณ 2 ด้วย 4
x=\frac{3+\sqrt{103}i}{8}
ตอนนี้ แก้สมการ x=\frac{3±\sqrt{103}i}{8} เมื่อ ± เป็นบวก เพิ่ม 3 ไปยัง i\sqrt{103}
x=\frac{-\sqrt{103}i+3}{8}
ตอนนี้ แก้สมการ x=\frac{3±\sqrt{103}i}{8} เมื่อ ± เป็นลบ ลบ i\sqrt{103} จาก 3
x=\frac{3+\sqrt{103}i}{8} x=\frac{-\sqrt{103}i+3}{8}
สมการได้รับการแก้ไขแล้ว
4xx+7=3x
ตัวแปร x ไม่สามารถเท่ากับ 0 เนื่องจากไม่ได้กำหนดให้หารด้วยศูนย์ได้ คูณทั้งสองข้างของสมการด้วย x
4x^{2}+7=3x
คูณ x และ x เพื่อรับ x^{2}
4x^{2}+7-3x=0
ลบ 3x จากทั้งสองด้าน
4x^{2}-3x=-7
ลบ 7 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
\frac{4x^{2}-3x}{4}=-\frac{7}{4}
หารทั้งสองข้างด้วย 4
x^{2}-\frac{3}{4}x=-\frac{7}{4}
หารด้วย 4 เลิกทำการคูณด้วย 4
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=-\frac{7}{4}+\left(-\frac{3}{8}\right)^{2}
หาร -\frac{3}{4} สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{3}{8} จากนั้นเพิ่มกำลังสองของ -\frac{3}{8} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{7}{4}+\frac{9}{64}
ยกกำลังสอง -\frac{3}{8} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{103}{64}
เพิ่ม -\frac{7}{4} ไปยัง \frac{9}{64} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
\left(x-\frac{3}{8}\right)^{2}=-\frac{103}{64}
ตัวประกอบx^{2}-\frac{3}{4}x+\frac{9}{64} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{-\frac{103}{64}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{3}{8}=\frac{\sqrt{103}i}{8} x-\frac{3}{8}=-\frac{\sqrt{103}i}{8}
ทำให้ง่ายขึ้น
x=\frac{3+\sqrt{103}i}{8} x=\frac{-\sqrt{103}i+3}{8}
เพิ่ม \frac{3}{8} ไปยังทั้งสองข้างของสมการ