ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

4x-y=5,-4x+5y=7
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
4x-y=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
4x=y+5
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{4}\left(y+5\right)
หารทั้งสองข้างด้วย 4
x=\frac{1}{4}y+\frac{5}{4}
คูณ \frac{1}{4} ด้วย y+5
-4\left(\frac{1}{4}y+\frac{5}{4}\right)+5y=7
ทดแทน \frac{5+y}{4} สำหรับ x ในอีกสมการหนึ่ง -4x+5y=7
-y-5+5y=7
คูณ -4 ด้วย \frac{5+y}{4}
4y-5=7
เพิ่ม -y ไปยัง 5y
4y=12
เพิ่ม 5 ไปยังทั้งสองข้างของสมการ
y=3
หารทั้งสองข้างด้วย 4
x=\frac{1}{4}\times 3+\frac{5}{4}
ทดแทน 3 สำหรับ y ใน x=\frac{1}{4}y+\frac{5}{4} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{3+5}{4}
คูณ \frac{1}{4} ด้วย 3
x=2
เพิ่ม \frac{5}{4} ไปยัง \frac{3}{4} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=2,y=3
ระบบถูกแก้แล้วในขณะนี้
4x-y=5,-4x+5y=7
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-\left(-4\right)\right)}&-\frac{-1}{4\times 5-\left(-\left(-4\right)\right)}\\-\frac{-4}{4\times 5-\left(-\left(-4\right)\right)}&\frac{4}{4\times 5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{1}{16}\\\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}\times 5+\frac{1}{16}\times 7\\\frac{1}{4}\times 5+\frac{1}{4}\times 7\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=2,y=3
แยกเมทริกซ์องค์ประกอบ x และ y
4x-y=5,-4x+5y=7
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-4\times 4x-4\left(-1\right)y=-4\times 5,4\left(-4\right)x+4\times 5y=4\times 7
เพื่อทำให้ 4x และ -4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 4
-16x+4y=-20,-16x+20y=28
ทำให้ง่ายขึ้น
-16x+16x+4y-20y=-20-28
ลบ -16x+20y=28 จาก -16x+4y=-20 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4y-20y=-20-28
เพิ่ม -16x ไปยัง 16x ตัดพจน์ -16x และ 16x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-16y=-20-28
เพิ่ม 4y ไปยัง -20y
-16y=-48
เพิ่ม -20 ไปยัง -28
y=3
หารทั้งสองข้างด้วย -16
-4x+5\times 3=7
ทดแทน 3 สำหรับ y ใน -4x+5y=7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-4x+15=7
คูณ 5 ด้วย 3
-4x=-8
ลบ 15 จากทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย -4
x=2,y=3
ระบบถูกแก้แล้วในขณะนี้