ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x^{2}+7x-4=0
หารทั้งสองข้างด้วย 2
a+b=7 ab=2\left(-4\right)=-8
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น 2x^{2}+ax+bx-4 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,8 -2,4
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -8
-1+8=7 -2+4=2
คำนวณผลรวมสำหรับแต่ละคู่
a=-1 b=8
โซลูชันเป็นคู่ที่จะให้ผลรวม 7
\left(2x^{2}-x\right)+\left(8x-4\right)
เขียน 2x^{2}+7x-4 ใหม่เป็น \left(2x^{2}-x\right)+\left(8x-4\right)
x\left(2x-1\right)+4\left(2x-1\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 4 ใน
\left(2x-1\right)\left(x+4\right)
แยกตัวประกอบของพจน์ร่วม 2x-1 โดยใช้คุณสมบัติการแจกแจง
x=\frac{1}{2} x=-4
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข 2x-1=0 และ x+4=0
4x^{2}+14x-8=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-14±\sqrt{14^{2}-4\times 4\left(-8\right)}}{2\times 4}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 4 แทน a, 14 แทน b และ -8 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-14±\sqrt{196-4\times 4\left(-8\right)}}{2\times 4}
ยกกำลังสอง 14
x=\frac{-14±\sqrt{196-16\left(-8\right)}}{2\times 4}
คูณ -4 ด้วย 4
x=\frac{-14±\sqrt{196+128}}{2\times 4}
คูณ -16 ด้วย -8
x=\frac{-14±\sqrt{324}}{2\times 4}
เพิ่ม 196 ไปยัง 128
x=\frac{-14±18}{2\times 4}
หารากที่สองของ 324
x=\frac{-14±18}{8}
คูณ 2 ด้วย 4
x=\frac{4}{8}
ตอนนี้ แก้สมการ x=\frac{-14±18}{8} เมื่อ ± เป็นบวก เพิ่ม -14 ไปยัง 18
x=\frac{1}{2}
ทำเศษส่วน \frac{4}{8} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 4
x=-\frac{32}{8}
ตอนนี้ แก้สมการ x=\frac{-14±18}{8} เมื่อ ± เป็นลบ ลบ 18 จาก -14
x=-4
หาร -32 ด้วย 8
x=\frac{1}{2} x=-4
สมการได้รับการแก้ไขแล้ว
4x^{2}+14x-8=0
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
4x^{2}+14x-8-\left(-8\right)=-\left(-8\right)
เพิ่ม 8 ไปยังทั้งสองข้างของสมการ
4x^{2}+14x=-\left(-8\right)
ลบ -8 จากตัวเองทำให้เหลือ 0
4x^{2}+14x=8
ลบ -8 จาก 0
\frac{4x^{2}+14x}{4}=\frac{8}{4}
หารทั้งสองข้างด้วย 4
x^{2}+\frac{14}{4}x=\frac{8}{4}
หารด้วย 4 เลิกทำการคูณด้วย 4
x^{2}+\frac{7}{2}x=\frac{8}{4}
ทำเศษส่วน \frac{14}{4} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 2
x^{2}+\frac{7}{2}x=2
หาร 8 ด้วย 4
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=2+\left(\frac{7}{4}\right)^{2}
หาร \frac{7}{2} สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ \frac{7}{4} จากนั้นเพิ่มกำลังสองของ \frac{7}{4} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}+\frac{7}{2}x+\frac{49}{16}=2+\frac{49}{16}
ยกกำลังสอง \frac{7}{4} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{81}{16}
เพิ่ม 2 ไปยัง \frac{49}{16}
\left(x+\frac{7}{4}\right)^{2}=\frac{81}{16}
ตัวประกอบx^{2}+\frac{7}{2}x+\frac{49}{16} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
หารากที่สองของทั้งสองข้างของสมการ
x+\frac{7}{4}=\frac{9}{4} x+\frac{7}{4}=-\frac{9}{4}
ทำให้ง่ายขึ้น
x=\frac{1}{2} x=-4
ลบ \frac{7}{4} จากทั้งสองข้างของสมการ