แยกตัวประกอบ
3\left(x-3\right)\left(x-2\right)
หาค่า
3\left(x-3\right)\left(x-2\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3\left(x^{2}-5x+6\right)
แยกตัวประกอบ 3
a+b=-5 ab=1\times 6=6
พิจารณา x^{2}-5x+6 แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น x^{2}+ax+bx+6 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-6 -2,-3
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 6
-1-6=-7 -2-3=-5
คำนวณผลรวมสำหรับแต่ละคู่
a=-3 b=-2
โซลูชันเป็นคู่ที่จะให้ผลรวม -5
\left(x^{2}-3x\right)+\left(-2x+6\right)
เขียน x^{2}-5x+6 ใหม่เป็น \left(x^{2}-3x\right)+\left(-2x+6\right)
x\left(x-3\right)-2\left(x-3\right)
แยกตัวประกอบ x ในกลุ่มแรกและ -2 ใน
\left(x-3\right)\left(x-2\right)
แยกตัวประกอบของพจน์ร่วม x-3 โดยใช้คุณสมบัติการแจกแจง
3\left(x-3\right)\left(x-2\right)
เขียนนิพจน์ที่แยกตัวประกอบสมบูรณ์ใหม่
3x^{2}-15x+18=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\times 18}}{2\times 3}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\times 18}}{2\times 3}
ยกกำลังสอง -15
x=\frac{-\left(-15\right)±\sqrt{225-12\times 18}}{2\times 3}
คูณ -4 ด้วย 3
x=\frac{-\left(-15\right)±\sqrt{225-216}}{2\times 3}
คูณ -12 ด้วย 18
x=\frac{-\left(-15\right)±\sqrt{9}}{2\times 3}
เพิ่ม 225 ไปยัง -216
x=\frac{-\left(-15\right)±3}{2\times 3}
หารากที่สองของ 9
x=\frac{15±3}{2\times 3}
ตรงข้ามกับ -15 คือ 15
x=\frac{15±3}{6}
คูณ 2 ด้วย 3
x=\frac{18}{6}
ตอนนี้ แก้สมการ x=\frac{15±3}{6} เมื่อ ± เป็นบวก เพิ่ม 15 ไปยัง 3
x=3
หาร 18 ด้วย 6
x=\frac{12}{6}
ตอนนี้ แก้สมการ x=\frac{15±3}{6} เมื่อ ± เป็นลบ ลบ 3 จาก 15
x=2
หาร 12 ด้วย 6
3x^{2}-15x+18=3\left(x-3\right)\left(x-2\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 3 สำหรับ x_{1} และ 2 สำหรับ x_{2}
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}