ข้ามไปที่เนื้อหาหลัก
หาค่า r
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

r^{2}+3r+2=0
หารทั้งสองข้างด้วย 3
a+b=3 ab=1\times 2=2
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น r^{2}+ar+br+2 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
a=1 b=2
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(r^{2}+r\right)+\left(2r+2\right)
เขียน r^{2}+3r+2 ใหม่เป็น \left(r^{2}+r\right)+\left(2r+2\right)
r\left(r+1\right)+2\left(r+1\right)
แยกตัวประกอบ r ในกลุ่มแรกและ 2 ใน
\left(r+1\right)\left(r+2\right)
แยกตัวประกอบของพจน์ร่วม r+1 โดยใช้คุณสมบัติการแจกแจง
r=-1 r=-2
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข r+1=0 และ r+2=0
3r^{2}+9r+6=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
r=\frac{-9±\sqrt{9^{2}-4\times 3\times 6}}{2\times 3}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 3 แทน a, 9 แทน b และ 6 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
r=\frac{-9±\sqrt{81-4\times 3\times 6}}{2\times 3}
ยกกำลังสอง 9
r=\frac{-9±\sqrt{81-12\times 6}}{2\times 3}
คูณ -4 ด้วย 3
r=\frac{-9±\sqrt{81-72}}{2\times 3}
คูณ -12 ด้วย 6
r=\frac{-9±\sqrt{9}}{2\times 3}
เพิ่ม 81 ไปยัง -72
r=\frac{-9±3}{2\times 3}
หารากที่สองของ 9
r=\frac{-9±3}{6}
คูณ 2 ด้วย 3
r=-\frac{6}{6}
ตอนนี้ แก้สมการ r=\frac{-9±3}{6} เมื่อ ± เป็นบวก เพิ่ม -9 ไปยัง 3
r=-1
หาร -6 ด้วย 6
r=-\frac{12}{6}
ตอนนี้ แก้สมการ r=\frac{-9±3}{6} เมื่อ ± เป็นลบ ลบ 3 จาก -9
r=-2
หาร -12 ด้วย 6
r=-1 r=-2
สมการได้รับการแก้ไขแล้ว
3r^{2}+9r+6=0
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
3r^{2}+9r+6-6=-6
ลบ 6 จากทั้งสองข้างของสมการ
3r^{2}+9r=-6
ลบ 6 จากตัวเองทำให้เหลือ 0
\frac{3r^{2}+9r}{3}=-\frac{6}{3}
หารทั้งสองข้างด้วย 3
r^{2}+\frac{9}{3}r=-\frac{6}{3}
หารด้วย 3 เลิกทำการคูณด้วย 3
r^{2}+3r=-\frac{6}{3}
หาร 9 ด้วย 3
r^{2}+3r=-2
หาร -6 ด้วย 3
r^{2}+3r+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
หาร 3 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ \frac{3}{2} จากนั้นเพิ่มกำลังสองของ \frac{3}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
r^{2}+3r+\frac{9}{4}=-2+\frac{9}{4}
ยกกำลังสอง \frac{3}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
r^{2}+3r+\frac{9}{4}=\frac{1}{4}
เพิ่ม -2 ไปยัง \frac{9}{4}
\left(r+\frac{3}{2}\right)^{2}=\frac{1}{4}
ตัวประกอบr^{2}+3r+\frac{9}{4} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(r+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
หารากที่สองของทั้งสองข้างของสมการ
r+\frac{3}{2}=\frac{1}{2} r+\frac{3}{2}=-\frac{1}{2}
ทำให้ง่ายขึ้น
r=-1 r=-2
ลบ \frac{3}{2} จากทั้งสองข้างของสมการ