แยกตัวประกอบ
\left(3x-5\right)\left(x+2\right)\left(x^{2}+4\right)
หาค่า
\left(3x-5\right)\left(x+2\right)\left(x^{2}+4\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3x^{4}+x^{3}+2x^{2}+4x-40=0
เมื่อต้องการแยกตัวประกอบนิพจน์ ให้แก้สมการที่นิพจน์เท่ากับ 0
±\frac{40}{3},±40,±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{8}{3},±8,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ -40 และ q หารค่าสัมประสิทธิ์นำ 3 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=-2
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
3x^{3}-5x^{2}+12x-20=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 3x^{4}+x^{3}+2x^{2}+4x-40 ด้วย x+2 เพื่อรับ 3x^{3}-5x^{2}+12x-20 เมื่อต้องการแยกตัวประกอบผลลัพธ์ ให้แก้ไขสมการที่มีค่าเท่ากับ 0
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ -20 และ q หารค่าสัมประสิทธิ์นำ 3 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=\frac{5}{3}
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
x^{2}+4=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 3x^{3}-5x^{2}+12x-20 ด้วย 3\left(x-\frac{5}{3}\right)=3x-5 เพื่อรับ x^{2}+4 เมื่อต้องการแยกตัวประกอบผลลัพธ์ ให้แก้ไขสมการที่มีค่าเท่ากับ 0
x=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 1 สำหรับ a 0 สำหรับ b และ 4 สำหรับ c ในสูตรกำลังสอง
x=\frac{0±\sqrt{-16}}{2}
ทำการคำนวณ
x^{2}+4
พหุนาม x^{2}+4 ไม่มีการแยกตัวประกอบเนื่องจากไม่มีรากตรรกยะ
\left(3x-5\right)\left(x+2\right)\left(x^{2}+4\right)
เขียนนิพจน์ที่แยกตัวประกอบโดยใช้รากที่ได้รับใหม่
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}