หาค่า b
b=-3
b=3
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
9+b^{2}=18
คำนวณ 3 กำลังของ 2 และรับ 9
9+b^{2}-18=0
ลบ 18 จากทั้งสองด้าน
-9+b^{2}=0
ลบ 18 จาก 9 เพื่อรับ -9
\left(b-3\right)\left(b+3\right)=0
พิจารณา -9+b^{2} เขียน -9+b^{2} ใหม่เป็น b^{2}-3^{2} ความแตกต่างของสี่เหลี่ยมสามารถแยกตัวประกอบได้โดยใช้กฎ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)
b=3 b=-3
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข b-3=0 และ b+3=0
9+b^{2}=18
คำนวณ 3 กำลังของ 2 และรับ 9
b^{2}=18-9
ลบ 9 จากทั้งสองด้าน
b^{2}=9
ลบ 9 จาก 18 เพื่อรับ 9
b=3 b=-3
หารากที่สองของทั้งสองข้างของสมการ
9+b^{2}=18
คำนวณ 3 กำลังของ 2 และรับ 9
9+b^{2}-18=0
ลบ 18 จากทั้งสองด้าน
-9+b^{2}=0
ลบ 18 จาก 9 เพื่อรับ -9
b^{2}-9=0
สมการกำลังสองเช่นแบบนี้ ที่มีพจน์ x^{2} แต่ไม่ใช่พจน์ x จะยังคงสามารถหาค่าได้โดยใช้สูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a} เมื่อปรากฏอยู่ในรูปแบบมาตรฐาน: ax^{2}+bx+c=0
b=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, 0 แทน b และ -9 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
b=\frac{0±\sqrt{-4\left(-9\right)}}{2}
ยกกำลังสอง 0
b=\frac{0±\sqrt{36}}{2}
คูณ -4 ด้วย -9
b=\frac{0±6}{2}
หารากที่สองของ 36
b=3
ตอนนี้ แก้สมการ b=\frac{0±6}{2} เมื่อ ± เป็นบวก หาร 6 ด้วย 2
b=-3
ตอนนี้ แก้สมการ b=\frac{0±6}{2} เมื่อ ± เป็นลบ หาร -6 ด้วย 2
b=3 b=-3
สมการได้รับการแก้ไขแล้ว
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}