หาค่า x
x=\sqrt{5}\approx 2.236067977
x=-\sqrt{5}\approx -2.236067977
x=3
x=\frac{1}{2}=0.5
กราฟ
แบบทดสอบ
Polynomial
ปัญหา 5 ข้อที่คล้ายคลึงกับ:
2 x ^ { 4 } - 7 x ^ { 3 } - 7 x ^ { 2 } + 35 x - 15 = 0
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
±\frac{15}{2},±15,±\frac{5}{2},±5,±\frac{3}{2},±3,±\frac{1}{2},±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ -15 และ q หารค่าสัมประสิทธิ์นำ 2 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=3
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
2x^{3}-x^{2}-10x+5=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 2x^{4}-7x^{3}-7x^{2}+35x-15 ด้วย x-3 เพื่อรับ 2x^{3}-x^{2}-10x+5 แก้สมการที่ผลลัพธ์เท่ากับ 0
±\frac{5}{2},±5,±\frac{1}{2},±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ 5 และ q หารค่าสัมประสิทธิ์นำ 2 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=\frac{1}{2}
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
x^{2}-5=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 2x^{3}-x^{2}-10x+5 ด้วย 2\left(x-\frac{1}{2}\right)=2x-1 เพื่อรับ x^{2}-5 แก้สมการที่ผลลัพธ์เท่ากับ 0
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-5\right)}}{2}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 1 สำหรับ a 0 สำหรับ b และ -5 สำหรับ c ในสูตรกำลังสอง
x=\frac{0±2\sqrt{5}}{2}
ทำการคำนวณ
x=-\sqrt{5} x=\sqrt{5}
แก้สมการ x^{2}-5=0 เมื่อ ± เป็นบวก และเมื่อ ± เป็นลบ
x=3 x=\frac{1}{2} x=-\sqrt{5} x=\sqrt{5}
แสดงรายการโซลูชันที่พบทั้งหมด
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}