ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=-1 ab=2\left(-6\right)=-12
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น 2x^{2}+ax+bx-6 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,-12 2,-6 3,-4
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นค่าลบตัวเลขค่าลบมีค่าสัมบูรณ์ที่มากกว่าจำนวนบวก แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -12
1-12=-11 2-6=-4 3-4=-1
คำนวณผลรวมสำหรับแต่ละคู่
a=-4 b=3
โซลูชันเป็นคู่ที่จะให้ผลรวม -1
\left(2x^{2}-4x\right)+\left(3x-6\right)
เขียน 2x^{2}-x-6 ใหม่เป็น \left(2x^{2}-4x\right)+\left(3x-6\right)
2x\left(x-2\right)+3\left(x-2\right)
แยกตัวประกอบ 2x ในกลุ่มแรกและ 3 ใน
\left(x-2\right)\left(2x+3\right)
แยกตัวประกอบของพจน์ร่วม x-2 โดยใช้คุณสมบัติการแจกแจง
2x^{2}-x-6=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
คูณ -4 ด้วย 2
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
คูณ -8 ด้วย -6
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
เพิ่ม 1 ไปยัง 48
x=\frac{-\left(-1\right)±7}{2\times 2}
หารากที่สองของ 49
x=\frac{1±7}{2\times 2}
ตรงข้ามกับ -1 คือ 1
x=\frac{1±7}{4}
คูณ 2 ด้วย 2
x=\frac{8}{4}
ตอนนี้ แก้สมการ x=\frac{1±7}{4} เมื่อ ± เป็นบวก เพิ่ม 1 ไปยัง 7
x=2
หาร 8 ด้วย 4
x=-\frac{6}{4}
ตอนนี้ แก้สมการ x=\frac{1±7}{4} เมื่อ ± เป็นลบ ลบ 7 จาก 1
x=-\frac{3}{2}
ทำเศษส่วน \frac{-6}{4} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 2
2x^{2}-x-6=2\left(x-2\right)\left(x-\left(-\frac{3}{2}\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 2 สำหรับ x_{1} และ -\frac{3}{2} สำหรับ x_{2}
2x^{2}-x-6=2\left(x-2\right)\left(x+\frac{3}{2}\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
2x^{2}-x-6=2\left(x-2\right)\times \frac{2x+3}{2}
เพิ่ม \frac{3}{2} ไปยัง x ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
2x^{2}-x-6=\left(x-2\right)\left(2x+3\right)
ยกเลิกการหาตัวหารร่วม 2 ใน 2 และ 2