หาค่า x
x=1
x=2
กราฟ
แบบทดสอบ
Polynomial
2 x ^ { 2 } = 6 x - 4
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x^{2}-6x=-4
ลบ 6x จากทั้งสองด้าน
2x^{2}-6x+4=0
เพิ่ม 4 ไปทั้งสองด้าน
x^{2}-3x+2=0
หารทั้งสองข้างด้วย 2
a+b=-3 ab=1\times 2=2
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น x^{2}+ax+bx+2 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
a=-2 b=-1
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(x^{2}-2x\right)+\left(-x+2\right)
เขียน x^{2}-3x+2 ใหม่เป็น \left(x^{2}-2x\right)+\left(-x+2\right)
x\left(x-2\right)-\left(x-2\right)
แยกตัวประกอบ x ในกลุ่มแรกและ -1 ใน
\left(x-2\right)\left(x-1\right)
แยกตัวประกอบของพจน์ร่วม x-2 โดยใช้คุณสมบัติการแจกแจง
x=2 x=1
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-2=0 และ x-1=0
2x^{2}-6x=-4
ลบ 6x จากทั้งสองด้าน
2x^{2}-6x+4=0
เพิ่ม 4 ไปทั้งสองด้าน
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\times 4}}{2\times 2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 2 แทน a, -6 แทน b และ 4 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\times 4}}{2\times 2}
ยกกำลังสอง -6
x=\frac{-\left(-6\right)±\sqrt{36-8\times 4}}{2\times 2}
คูณ -4 ด้วย 2
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2\times 2}
คูณ -8 ด้วย 4
x=\frac{-\left(-6\right)±\sqrt{4}}{2\times 2}
เพิ่ม 36 ไปยัง -32
x=\frac{-\left(-6\right)±2}{2\times 2}
หารากที่สองของ 4
x=\frac{6±2}{2\times 2}
ตรงข้ามกับ -6 คือ 6
x=\frac{6±2}{4}
คูณ 2 ด้วย 2
x=\frac{8}{4}
ตอนนี้ แก้สมการ x=\frac{6±2}{4} เมื่อ ± เป็นบวก เพิ่ม 6 ไปยัง 2
x=2
หาร 8 ด้วย 4
x=\frac{4}{4}
ตอนนี้ แก้สมการ x=\frac{6±2}{4} เมื่อ ± เป็นลบ ลบ 2 จาก 6
x=1
หาร 4 ด้วย 4
x=2 x=1
สมการได้รับการแก้ไขแล้ว
2x^{2}-6x=-4
ลบ 6x จากทั้งสองด้าน
\frac{2x^{2}-6x}{2}=-\frac{4}{2}
หารทั้งสองข้างด้วย 2
x^{2}+\left(-\frac{6}{2}\right)x=-\frac{4}{2}
หารด้วย 2 เลิกทำการคูณด้วย 2
x^{2}-3x=-\frac{4}{2}
หาร -6 ด้วย 2
x^{2}-3x=-2
หาร -4 ด้วย 2
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
หาร -3 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{3}{2} จากนั้นเพิ่มกำลังสองของ -\frac{3}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
ยกกำลังสอง -\frac{3}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
เพิ่ม -2 ไปยัง \frac{9}{4}
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
ตัวประกอบx^{2}-3x+\frac{9}{4} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
ทำให้ง่ายขึ้น
x=2 x=1
เพิ่ม \frac{3}{2} ไปยังทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}