แยกตัวประกอบ
\left(4x+1\right)^{2}
หาค่า
\left(4x+1\right)^{2}
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
a+b=8 ab=16\times 1=16
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น 16x^{2}+ax+bx+1 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,16 2,8 4,4
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 16
1+16=17 2+8=10 4+4=8
คำนวณผลรวมสำหรับแต่ละคู่
a=4 b=4
โซลูชันเป็นคู่ที่จะให้ผลรวม 8
\left(16x^{2}+4x\right)+\left(4x+1\right)
เขียน 16x^{2}+8x+1 ใหม่เป็น \left(16x^{2}+4x\right)+\left(4x+1\right)
4x\left(4x+1\right)+4x+1
แยกตัวประกอบ 4x ใน 16x^{2}+4x
\left(4x+1\right)\left(4x+1\right)
แยกตัวประกอบของพจน์ร่วม 4x+1 โดยใช้คุณสมบัติการแจกแจง
\left(4x+1\right)^{2}
เขียนใหม่เป็นทวินามกำลังสอง
factor(16x^{2}+8x+1)
ตรีนามนี้มีรูปแบบของตรีนามยกกำลังสอง อาจถูกคูณด้วยตัวประกอบทั่วไป ตรีนามยกกำลังสองสามารถแยกตัวประกอบ โดยการหารากที่สองของพจน์นำ และพจน์ตาม
gcf(16,8,1)=1
ค้นหาตัวหารร่วมมากของสัมประสิทธิ์
\sqrt{16x^{2}}=4x
หารากที่สองของพจน์นำ 16x^{2}
\left(4x+1\right)^{2}
ตรีนามคือ กำลังสองของทวินามที่เป็นผลรวมหรือผลต่างของรากที่สองของพจน์นำและพจน์ตาม ด้วยเครื่องหมายที่กำหนดโดยเครื่องหมายของพจน์กลางของตรีนาม
16x^{2}+8x+1=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2\times 16}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-8±\sqrt{64-4\times 16}}{2\times 16}
ยกกำลังสอง 8
x=\frac{-8±\sqrt{64-64}}{2\times 16}
คูณ -4 ด้วย 16
x=\frac{-8±\sqrt{0}}{2\times 16}
เพิ่ม 64 ไปยัง -64
x=\frac{-8±0}{2\times 16}
หารากที่สองของ 0
x=\frac{-8±0}{32}
คูณ 2 ด้วย 16
16x^{2}+8x+1=16\left(x-\left(-\frac{1}{4}\right)\right)\left(x-\left(-\frac{1}{4}\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ -\frac{1}{4} สำหรับ x_{1} และ -\frac{1}{4} สำหรับ x_{2}
16x^{2}+8x+1=16\left(x+\frac{1}{4}\right)\left(x+\frac{1}{4}\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
16x^{2}+8x+1=16\times \frac{4x+1}{4}\left(x+\frac{1}{4}\right)
เพิ่ม \frac{1}{4} ไปยัง x ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
16x^{2}+8x+1=16\times \frac{4x+1}{4}\times \frac{4x+1}{4}
เพิ่ม \frac{1}{4} ไปยัง x ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
16x^{2}+8x+1=16\times \frac{\left(4x+1\right)\left(4x+1\right)}{4\times 4}
คูณ \frac{4x+1}{4} ครั้ง \frac{4x+1}{4} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
16x^{2}+8x+1=16\times \frac{\left(4x+1\right)\left(4x+1\right)}{16}
คูณ 4 ด้วย 4
16x^{2}+8x+1=\left(4x+1\right)\left(4x+1\right)
ยกเลิกการหาตัวหารร่วม 16 ใน 16 และ 16
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}