แยกตัวประกอบ
\left(5x-7\right)\left(3x+2\right)
หาค่า
\left(5x-7\right)\left(3x+2\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
a+b=-11 ab=15\left(-14\right)=-210
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น 15x^{2}+ax+bx-14 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,-210 2,-105 3,-70 5,-42 6,-35 7,-30 10,-21 14,-15
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นค่าลบตัวเลขค่าลบมีค่าสัมบูรณ์ที่มากกว่าจำนวนบวก แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -210
1-210=-209 2-105=-103 3-70=-67 5-42=-37 6-35=-29 7-30=-23 10-21=-11 14-15=-1
คำนวณผลรวมสำหรับแต่ละคู่
a=-21 b=10
โซลูชันเป็นคู่ที่จะให้ผลรวม -11
\left(15x^{2}-21x\right)+\left(10x-14\right)
เขียน 15x^{2}-11x-14 ใหม่เป็น \left(15x^{2}-21x\right)+\left(10x-14\right)
3x\left(5x-7\right)+2\left(5x-7\right)
แยกตัวประกอบ 3x ในกลุ่มแรกและ 2 ใน
\left(5x-7\right)\left(3x+2\right)
แยกตัวประกอบของพจน์ร่วม 5x-7 โดยใช้คุณสมบัติการแจกแจง
15x^{2}-11x-14=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 15\left(-14\right)}}{2\times 15}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-11\right)±\sqrt{121-4\times 15\left(-14\right)}}{2\times 15}
ยกกำลังสอง -11
x=\frac{-\left(-11\right)±\sqrt{121-60\left(-14\right)}}{2\times 15}
คูณ -4 ด้วย 15
x=\frac{-\left(-11\right)±\sqrt{121+840}}{2\times 15}
คูณ -60 ด้วย -14
x=\frac{-\left(-11\right)±\sqrt{961}}{2\times 15}
เพิ่ม 121 ไปยัง 840
x=\frac{-\left(-11\right)±31}{2\times 15}
หารากที่สองของ 961
x=\frac{11±31}{2\times 15}
ตรงข้ามกับ -11 คือ 11
x=\frac{11±31}{30}
คูณ 2 ด้วย 15
x=\frac{42}{30}
ตอนนี้ แก้สมการ x=\frac{11±31}{30} เมื่อ ± เป็นบวก เพิ่ม 11 ไปยัง 31
x=\frac{7}{5}
ทำเศษส่วน \frac{42}{30} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 6
x=-\frac{20}{30}
ตอนนี้ แก้สมการ x=\frac{11±31}{30} เมื่อ ± เป็นลบ ลบ 31 จาก 11
x=-\frac{2}{3}
ทำเศษส่วน \frac{-20}{30} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 10
15x^{2}-11x-14=15\left(x-\frac{7}{5}\right)\left(x-\left(-\frac{2}{3}\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ \frac{7}{5} สำหรับ x_{1} และ -\frac{2}{3} สำหรับ x_{2}
15x^{2}-11x-14=15\left(x-\frac{7}{5}\right)\left(x+\frac{2}{3}\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
15x^{2}-11x-14=15\times \frac{5x-7}{5}\left(x+\frac{2}{3}\right)
ลบ \frac{7}{5} จาก x โดยการค้นหาตัวหารร่วมและลบเศษออก แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
15x^{2}-11x-14=15\times \frac{5x-7}{5}\times \frac{3x+2}{3}
เพิ่ม \frac{2}{3} ไปยัง x ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
15x^{2}-11x-14=15\times \frac{\left(5x-7\right)\left(3x+2\right)}{5\times 3}
คูณ \frac{5x-7}{5} ครั้ง \frac{3x+2}{3} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
15x^{2}-11x-14=15\times \frac{\left(5x-7\right)\left(3x+2\right)}{15}
คูณ 5 ด้วย 3
15x^{2}-11x-14=\left(5x-7\right)\left(3x+2\right)
ยกเลิกการหาตัวหารร่วม 15 ใน 15 และ 15
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}