แยกตัวประกอบ
\left(n-6\right)\left(n-2\right)
หาค่า
\left(n-6\right)\left(n-2\right)
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
n^{2}-8n+12
จัดเรียงพหุนามให้อยู่ในรูปแบบมาตรฐาน วางตามลำดับจากดีกรีที่มากที่สุดไปหาน้อยที่สุด
a+b=-8 ab=1\times 12=12
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น n^{2}+an+bn+12 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,-12 -2,-6 -3,-4
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 12
-1-12=-13 -2-6=-8 -3-4=-7
คำนวณผลรวมสำหรับแต่ละคู่
a=-6 b=-2
โซลูชันเป็นคู่ที่จะให้ผลรวม -8
\left(n^{2}-6n\right)+\left(-2n+12\right)
เขียน n^{2}-8n+12 ใหม่เป็น \left(n^{2}-6n\right)+\left(-2n+12\right)
n\left(n-6\right)-2\left(n-6\right)
แยกตัวประกอบ n ในกลุ่มแรกและ -2 ใน
\left(n-6\right)\left(n-2\right)
แยกตัวประกอบของพจน์ร่วม n-6 โดยใช้คุณสมบัติการแจกแจง
n^{2}-8n+12=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
n=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
n=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
ยกกำลังสอง -8
n=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
คูณ -4 ด้วย 12
n=\frac{-\left(-8\right)±\sqrt{16}}{2}
เพิ่ม 64 ไปยัง -48
n=\frac{-\left(-8\right)±4}{2}
หารากที่สองของ 16
n=\frac{8±4}{2}
ตรงข้ามกับ -8 คือ 8
n=\frac{12}{2}
ตอนนี้ แก้สมการ n=\frac{8±4}{2} เมื่อ ± เป็นบวก เพิ่ม 8 ไปยัง 4
n=6
หาร 12 ด้วย 2
n=\frac{4}{2}
ตอนนี้ แก้สมการ n=\frac{8±4}{2} เมื่อ ± เป็นลบ ลบ 4 จาก 8
n=2
หาร 4 ด้วย 2
n^{2}-8n+12=\left(n-6\right)\left(n-2\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 6 สำหรับ x_{1} และ 2 สำหรับ x_{2}
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}